Ductile-Iron Pipe
and Fittings

AWWA MANUAL M41

Third Edition

American Water Works Association

Copyright © 2009 American Water Works Association. All Rights Reserved.
Contents

List of Figures, vii
List of Tables, xi
Preface, xiii
Acknowledgments, xv

Chapter 1 General Information and History .. 1
 1.1 History, 1
 1.2 Applications and Appurtenances, 3
 1.3 Ductile Iron Pipe Research Association (DIPRA), 5

Chapter 2 Applicable Standards .. 7
 2.1 Related Standards, 7
 2.2 Other Reference Standards and Special Products, 10
 References, 10

Chapter 3 Manufacturing and Testing ... 13
 3.1 Manufacturing, 13
 3.2 Testing, 17
 3.3 Fittings Testing, 19
 References, 20

Chapter 4 Design .. 21
 4.1 Background, 21
 4.2 Major Design Criteria and Formulas, 22
 4.3 Truck Loads on Pipe Buried at Shallow Depths, 38
 4.4 Thickness Design for Ductile-Iron Pipe Under Railroads, 43
 4.5 Thickness Design for Ductile-Iron Pipe on Supports, 45
 4.6 Special Use Considerations, 57
 References, 58

Chapter 5 Pipe Joints ... 59
 5.1 Introduction, 59
 5.2 Joints, 59
 5.3 Gaskets, 64
 5.4 Joint Accessories, 64
 5.5 Permeation, 65
 References, 66

Copyright © 2009 American Water Works Association. All Rights Reserved.
Chapter 6 Ductile- and Gray-Iron Fittings .. 67
 6.1 Introduction, 67
 6.2 Fittings, 67
 6.3 Special Service Requirements, 70
 References, 71

Chapter 7 Valves and Hydrants .. 73
 7.1 Introduction, 73
 7.2 Types of Valves and Hydrants, 73
 7.3 Installation, 76
 7.4 Operation, 76
 7.5 Good Practice, 77
 References, 77

Chapter 8 Thrust Restraint Design for Ductile-Iron Pipe 79
 8.1 Introduction, 79
 8.2 The Thrust Force, 81
 8.3 Thrust Blocks, 82
 8.4 Restrained Joints, 85
 8.5 Restraint Design for Vertical Bends, Tees, Reducers, and Dead Ends, 93
 8.6 Encroaching Restrained Lengths, 97
 8.7 Restrained Length, 99
 8.8 Select Backfill Considerations, 99
 8.9 Combining Thrust Blocks and Restrained Joints, 101
 8.10 Pipe in a Casing, 101
 8.11 Future Excavations, 101
 8.12 Deflected Unrestrained Ductile-Iron Pipe Joints, 101
 8.13 Computer Program, 102
 8.14 Restrained Length Calculation Procedure, 102
 8.15 Tabular Values for F_{s}, $(F_{s})_{b}$, and R_{s}, 103
 8.16 Restrained Joint Design Tables for Horizontal Bends, 104
 References, 147

Chapter 9 Interior Linings and Hydraulics ... 149
 9.1 Cement–Mortar-Lined Ductile-Iron Pipe, 149
 9.2 Flow Characteristics of Ductile-Iron Pipe, 153
 9.3 Pumping Cost, 155
 References, 164

Chapter 10 External Corrosion Protection ... 165
 10.1 Introduction, 165
 10.2 Basic Corrosion Theory, 166
 10.3 Corrosion Resistance of Ductile-Iron Pipe, 172
 10.4 Evaluation of Corrosive Soils, 173
10.5 Buried Service—Corrosion Control, 175
10.6 Exposed Service Conditions, 188
10.7 Submerged Service Conditions and Control, 192
References, 193

Chapter 11 Installation of Ductile-Iron Pipe .. 195
11.1 Introduction, 195
11.2 Pipe Inspection, Storage, Handling, and Delivery, 195
11.3 Trenching, Embedment, Pipe Installation, and Backfilling, 197
11.4 Pipeline Accessories, 209
11.5 Thrust Restraint, 212
11.6 Flushing, Field Testing, and Disinfection, 212
11.7 Service Taps, 215
11.8 Highway and Railroad Crossings, 220
11.9 Trenchless Applications, 220
11.10 Subaqueous Installations, 220
11.11 Other Installations, 222
References, 225

Chapter 12 Trenchless Installation—Horizontal Directional Drilling .. 227
12.1 Introduction, 227
12.2 Predesign Investigation, 229
12.3 HDD Assembly Methods for Flexible Restrained-Joint Ductile-Iron Pipe, 230
12.4 Survey, 232
12.5 Subsurface Analysis, 232
12.6 Borepath Design, 234
12.7 Pipe Design: Introduction, 235
12.8 Testing and Service Pressure/Loads, 238
12.9 Thermal Expansion/Contraction and Pulling Load “Recoil,” 239
References, 239

Chapter 13 Guidelines for Purchase of Pipe and Fittings .. 241
13.1 General, 241
13.2 Ductile-Iron Pipe, 243
13.3 Ductile-Iron and Gray-Iron Fittings and Specials, 244
13.4 Polyethylene Encasement, 244
References, 245

Appendix A Illustrations of Proprietary Joints for Ductile-Iron Pipe and Fittings ... 247

Index .. 253

AWWA Manuals.. 259
Figures

1-1 A 48-in. ductile-iron pipe water transmission main, 4
3-1 Elements of a casting machine, 15
3-2 Pipe entering an annealing oven, 16
3-3 Vertical annealing furnace, 17
3-4 Hydrostatic testing of pipe to a minimum of 500 psi (3,450 kPa), 18
4-1 Performance test on 36-in. (914-mm) ductile-iron pipe with push-on joints, 22
4-2 Laying conditions for ductile-iron pipe, 25
4-3 Truck loading conditions—single-wheel load, 39
4-4 Pipe loading from uniformly distributed railroad loading, 43
4-5 Railroad loading for Cooper E-80 locomotives, 43
4-6 Ductile-iron pipe is well suited for pipe-on-supports applications because of its beam strength, 47
4-7 Saddle angle and width, 47
5-1 Push-on, mechanical, and flanged joints, 61
5-2 Flanged joint details, 61
5-3 Flanged ductile-iron pipe and fittings in a water treatment plant, 62
5-4 Installation of mechanical-joint-type restrained joints, 63
6-1 Welded-on push-on joint outlet, 68
6-2 Ductile-iron fittings stacked in a storage yard, 69
7-1 Installation of a large-diameter gate valve, 74
7-2 Swing-check valves in a pump discharge line, 75
8-1 Push-on joint detail, 79
8-2 Thrust forces at joint of straight pipe, 81
8-3 Thrust forces at bend, 82
8-4 Thrust forces on other pipe configurations or appurtenances, 83
8-5 Bearing block details, 84
8-6 Gravity thrust block, 86
8-7 Restrained joints in a buried piping system, 86
8-8 Schematic of pipe—soil behavior at horizontal bend (or vertical up-bend), 88
8-9 Unit normal forces on pipe, 91
8-10 Vertical down-bend diagram, 94
8-11 Reaction forces at tees, 96
8-12 Reaction forces for reducers, 96
8-13 Reaction forces at dead ends, 96
8-14 Equal angle vertical offset (θ°), 97
8-15 Combined horizontal equal angle bends (θ°), 100
8-16 Combined equal angle vertical offsets (θ°), 100
9-1 Cement–mortar-lined ductile-iron pipe, 150
9-2 Nomograph for pipe size, head loss, and discharge for ductile-iron pipe, 154
10-1 Chemical reactions in a typical galvanic corrosion cell, 167
10-2 Corrosion cell, 169
10-3 Electrolytic corrosion cell, 170
10-4 Typical stray current environment, 170
10-5 Alternate polyethylene encasement installation methods, 177
10-6 Installation of polyethylene encasement using Method A, 178
10-7 Peened surface of a deLavaud pipe mold, 182
10-8 Close-up photograph of the cast surface of a typical ductile-iron pipe made by the deLavaud process, 182
10-9 Scanning electron microscope photomicrograph of a ductile-iron pipe surface profile. The layers consist of a 135- to 143-µm (5- to 6-mil) thickness of annealing oxide with underlying ductile iron, 183
10-10 Schematic diagram of a typical cross section of a ductile-iron pipe, 183
10-11a Annealed ductile-iron pipe before over-blasting, 184
10-11b Same ductile-iron pipe resulting in blisters and disbondment from over-blasting, 184
10-12 Typical risk model, 188
11-1 Unloading pipe with a forklift, 196
11-2 Unloading pipe with a crane, 197
11-3 Installing small-diameter ductile-iron pipe in a narrow trench, 200
11-4 Because of its ruggedness, ductile-iron pipe is particularly suitable for installation in demanding environments, 200
11-5 Polyethylene-encased ductile-iron pipe, 201
11-6 Laying conditions for ductile-iron pipe, 203
11-7 Push-on joint assembly, 204
11-8 Mechanical joint assembly, 205
11-9 Sweeping curves without fittings and specials are possible because of liberal joint deflection allowance by ductile-iron pipe push-on joints, 206
11-10 Pipeline curve geometry, 208
11-11 Cutting pipe with an abrasive wheel saw, 208
11-12 Installing valves and fittings, 210
11-13 Installation of a 48-in. (1,219-mm) butterfly valve, 211
11-14 Fire hydrant installation, 213
11-15 Direct service connection tapped through polyethylene adhesive tape and polyethylene film, 217
11-16 Ball-and-socket ductile-iron pipe used in a subaqueous installation using the “chute” method, 221
11-17 Subaqueous pipe being floated into position, 221
11-18 Ductile-iron pipe installed on a bridge, 222
11-19 Ductile-iron pipe spanning waterway, 223
11-20 Pump station piping, 224
11-21 Ductile-iron pipe being installed in a deep trench, 224
12-1 Pilot bore, 227
12-2 Prereaming, 228
12-3 Pipe pullback, 229
12-4 Assembled line method, 231
12-5 Cartridge method, 231
12-6 Polyethylene encasement, 234
13-1 A full truck load of ductile-iron pipe, 243
A-1 Push-on joints, 248
A-2 Ball-and-socket joints, 248
A-3 Grooved-and-shouldered joints, 249
A-4 Restrained joints—push-on type, 249
A-5 Restrained joints—mechanical joint and other joint type, 251
This page intentionally blank.
Tables

3-1 Acceptance values for tensile tests, 19
4-1 Reduction factors, R, for truck load calculations, 24
4-2 Design values for standard laying conditions, 27
4-3 Allowances for casting tolerance, 29
4-4 Standard pressure classes of ductile-iron pipe, 29
4-5 Rated working pressure and maximum depth of cover, standard pressure classes, 30
4-6 Special thickness classes of ductile-iron pipe, 32
4-7 Rated working pressure and maximum depth of cover, special thickness classes, 33
4-8 Earth loads P_e, truck loads P_t, and trench loads P_v (psi), 40
4-9 Surface load factors C for single truck on unpaved road, 40
4-10 Thickness for earth load plus truck load, 41
4-11 Surface load factors for Cooper railroad loading, 45
4-12 Pipe plus water weight ($W_p + W_w$) and design wall thickness t_n, 50
4-13 Earth loads P_e and truck loads P_t (psi), 54
5-1 Gasket materials used for ductile-iron pipe in water and sewage service, 65
8-1 Horizontal soil-bearing strength, 84
8-2 Suggested values for soil parameters and reduction constant K_n, 87
8-3 Soil classification chart—ASTM Standard D2487, 90
8-4 Values for D', A, W_p, W_w, and ($W_p + W_w$), 92
8-5 Thrust restraint design for ductile-iron pipe for clay 1 soil type, 105
8-6 Thrust restraint design for ductile-iron pipe for silt 1 soil type, 108
8-7 Thrust restraint design for ductile-iron pipe for clay 2 soil type, 111
8-8 Thrust restraint design for ductile-iron pipe for silt 2 soil type, 114
8-9 Thrust restraint design for ductile-iron pipe for coh-gran soil type, 117
8-10 Thrust restraint design for ductile-iron pipe for sand silt soil type, 120
8-11 Thrust restraint design for ductile-iron pipe for good sand soil type, 123
8-12 Restrained joint lengths for horizontal bends for clay 1 soil type, 126
8-13 Restrained joint lengths for horizontal bends for silt 1 soil type, 129
8-14 Restrained joint lengths for horizontal bends for clay 2 soil type, 132
8-15 Restrained joint lengths for horizontal bends for silt 2 soil type, 135
8-16 Restrained joint lengths for horizontal bends for coh-gran soil type, 138
8-17 Restrained joint lengths for horizontal bends for sand silt soil type, 141
8-18 Restrained joint lengths for horizontal bends for good sand soil type, 144
9-1 Inside diameters and flow areas of the minimum available pressure classes of cement–
mortar-lined ductile-iron pipe, 156
9-2 Head loss in feet per 1,000 ft of pipe (6 in. to 12 in.), cement–mortar-lined ductile-iron pipe,
nominal ID pipe, $C = 140$, 157
9-3 Head loss in feet per 1,000 ft of pipe (14 in. to 20 in.), cement–mortar-lined ductile-iron pipe,
nominal ID pipe, $C = 140$, 157
9-4 Head loss in feet per 1,000 ft of pipe (24 in. to 36 in.), cement–mortar-lined ductile-iron pipe,
nominal ID pipe, $C = 140$, 158
9-5 Head loss in feet per 1,000 ft of pipe (42 in. to 54 in.), cement–mortar-lined ductile-iron pipe,
nominal ID pipe, $C = 140$, 158
9-6 Head loss in feet per 1,000 ft of pipe (60 in. to 64 in.), cement–mortar-lined ductile-iron pipe,
nominal ID pipe, $C = 140$, 159
10-1 Galvanic series of selected metals and alloys (in seawater), 168
10-2 Soil-test evaluation for gray or ductile cast-iron pipe (10-point system), 174
11-1 Maximum stacking heights for ductile-iron pipe, 198
11-2 Suggested trench widths at the top of the pipe, 199
11-3 Mechanical joint bolt torques, 202
11-4 Maximum joint deflection full-length pipe—push-on type joint pipe, 207
11-5 Maximum joint deflection full-length pipe—mechanical type joint pipe, 207
11-6 Hydrostatic testing allowance per 1,000 ft (305 m) of pipeline (gph), 216
11-7 Pipe thicknesses required for different tap sizes as per ANSI/ASME B1.20.1 for standard
 taper pipe threads with two, three, and four full threads, 218
11-8 Pipe thicknesses required for different tap sizes as per AWWA C800 for standard corporation
 stop threads with two, three, and four full threads, 219
12-1 Recommended borepath reamed inside diameters, 228
12-2 HDD applications and rationale, 229
12-3 Use of HDD in various soil types, 233
Preface

This is the third edition of AWWA M41, *Ductile-Iron Pipe and Fittings*. This manual provides the user with both technical and general information to aid in the design, specification, procurement, installation, and understanding of ductile-iron pipe and fittings. It is a discussion of recommended practice, not an AWWA standard calling for compliance with certain specifications. It is intended for use by utilities and municipalities of all sizes, whether as a reference book or textbook for those not fully familiar with ductile-iron pipe and fitting products. Design engineers and consultants may use this manual in preparing plans and specifications for new ductile-iron pipe projects.

The manual covers ductile-iron pipe and fitting products and certain appurtenances and their application to practical installations, whether of a standard or special nature. For adequate knowledge of these products, the entire manual should be studied. Readers will also find the manual a useful source of information when assistance is needed with specific or unusual conditions. The manual contains a list of applicable national standards, which may be purchased from the respective standards organizations (e.g., AWWA, ASTM). Standards referenced in this manual refer to the latest editions.

Credit is extended to the Ductile Iron Pipe Research Association (DIPRA) for granting permission to reprint numerous graphics and tables found throughout this manual.