External Corrosion Control for Infrastructure Sustainability

Third Edition
Contents

List of Figures, v
List of Tables, vii
Preface, ix
Acknowledgments, xi

Chapter 1 Importance of Controlling External Corrosion ... 1
 Corrosion: Occurrence and Implications, 2
 Economics of Corrosion Control, 6
 References, 6

Chapter 2 Chemistry of Corrosion ... 7
 Basic Electrochemistry of Corrosion, 7
 Chemistry of Corrosion in Water Systems, 14

Chapter 3 Evaluating the Potential for Corrosion ... 25
 Field and Laboratory Measurements, 26
 Stray Currents, 31
 MIC (Microbiologically Influenced Corrosion), 33
 Effects of the Chemical Environment on Common Water Pipe Materials, 34
 References, 47

Chapter 4 Corrosion Control and Protection of Buried Pipelines 49
 Coatings and Linings, 50
 Cathodic Protection, 52
 Materials Selection, 60
 Trench Improvement, 60
 Protective Methods for Specific Pipe Materials, 60
 References, 65

Chapter 5 Atmospheric Corrosion ... 67
 How Metals Corrode in the Atmosphere, 68
 Types of Corrosion That Can Be Expected, 70
 Methods of Control, 73
 Coating Evaluation, 77
 Stainless Steel in Aboveground Environments, 77
 References, 77

Chapter 6 Corrosion Control of Water Storage Tanks .. 79
 Corrosion of Water Tanks, 79
 Corrosion Prevention for Water Tanks, 81
 Conclusion, 86
 References, 86

Glossary, 87
Index, 91
List of AWWA Manuals, 97
Figures

1-1 Metals used in a typical gate valve, 3
1-2 Metals used at a typical water-service-to-main connection, 4
1-3 Metals used in a pipe-repair clamp, 4

2-1 The four basic elements of a galvanic corrosion cell: anode, cathode, electrolyte, and electronic path, 8
2-2 Chemical reactions in a typical galvanic corrosion cell, 9
2-3 Galvanic cell formed with nonuniform electrolyte and electrodes of a single metal, 10
2-4 Creating a galvanic cell with a single piece of metal in a nonuniform electrolyte, 11
2-5 Contrasting conventional current flow with electron movement in a galvanic corrosion cell. Current flow in the electrolyte is by ion transport, 12
2-6 A typical electrolytic corrosion cell, 13
2-7 Direct-current transportation system as a source of current causing electrolytic corrosion, 15
2-8 Measuring cell voltage with a voltmeter, 15
2-9 Concentration cell (crevice) corrosion, 19
2-10 Pitting corrosion (arrows indicate positive current flow), 19
2-11 Impingement corrosion, 20
2-12 Photograph of sulfur joint corrosion failure of gray iron pipe caused by a combination of corrosive characteristics of the sulfur joint material used to pack the joint and MIC, 21
2-13 Stress, fatigue, and fretting corrosion, 22
2-14 Selective corrosion, 23
2-15 Dezincification of a brass valve seat, 24
2-16 Atmospheric corrosion, 24

3-1 The four-pin system of soil-resistivity testing, 26
3-2 Use of a single probe for testing soil resistivity, 27
3-3 Quad-box for testing resistivity of a water-saturated soil sample, 27
3-4 Testing soil pH, 28
3-5 Testing for pipe-to-soil potential, 29
3-6 Failure caused by stray current, 31
3-7 Example joint bond: coat exposed wire, thermite weld, and steel after welding, 32
3-8a Unrestrained joint per AWWA M11 (AWWA C200-type steel pipe), 37
3-8b Restrained joint per AWWA M11 (AWWA C200-type steel pipe), 37
3-9 Reinforced concrete cylinder pipe (AWWA C300-type concrete pipe), 40
3-10 Prestressed concrete lined cylinder pipe (AWWA C301-type concrete pipe), 40
3-11 Prestressed concrete embedded cylinder pipe (AWWA C301-type concrete pipe), 40
3-12 Bar-wrapped concrete cylinder pipe (AWWA C303-type concrete pipe), 41

4-1 Cathodic protection system (galvanic cell using sacrificial anodes), 52
4-2 Details of a sacrificial anode installation, 54
4-3 Details of an impressed-current system, 57
4-4 Corrosion caused by electrical discontinuity in a cathodically protected pipeline, 58
4-5 Corrosion of a metal structure in the vicinity of a cathodically protected structure, 59
4-6 Three methods for polyethylene encasement of ductile-iron pipelines, 64

5-1 Schematic of the four requirements for atmospheric corrosion, 68
5-2 The effects of orientation on atmospheric corrosion, 69
5-3 Crevice corrosion or pack rust, 71
5-4 Stress-related galvanic corrosion of fasteners, 72
5-5 Application of coating system, 75

6-1 Typical cathodic protection system for ground storage reservoir, 83
6-2 Typical cathodic protection system for elevated tank, 84
Tables

2-1 Galvanic series of selected metals and alloys (in seawater), 17
2-2 Typical soil corrosion cells resulting from nonuniform electrolyte conditions, 22

3-1 Soil-test evaluation for ductile-iron pipe (10-point system), 35
3-2 Soils grouped in order of corrosive action on steel, 38
3-3 Relationship of soil corrosion to soil resistivity, 38
3-4 Guidelines for use of AC pipe based on pH of acidic soils, 44
3-5 Corrosion guidelines for AC pipe for soluble sulfate in water and soils, 44
3-6 Stainless steel alloys and their corrosion resistance, 45
3-7 Suitable applications for stainless steels, 46

4-1 Magnesium anode factors, 55

5-1 Comparison of uniform corrosion rates of different metals in the atmosphere, 70