CFRP Renewal and Strengthening of Prestressed Concrete Cylinder Pipe (PCCP)

First edition approved by AWWA Board of Directors June 9, 2018.
Committee Personnel

The AWWA Standards Subcommittee on ANSI/AWWA C305, which developed this standard, had the following personnel at the time:

Mehdi S. Zarghamee, Chair
Anna Pridmore, Secretary

T. Alkhrdaji, Structural Technologies Strongpoint LLC, Columbia, Md.
S.A. Arnaout, Thompson Pipe Group, Grand Prairie, Tex.
S.F. Arnold, Fyfe Co. LLC, San Diego, Calif.
G.J. Blaszak, Milliken Infrastructure Solutions LLC, Spartanburg, S.C.
W.R. Brunzell, Brunzell Associates Ltd., Wilmette, Ill.
R.A. Coates, Professional Engineer, Miami, Fla.
D.L. Davis, Howard County Department of Public Works, Columbia, Md.
P. DiMarco, Howard County Department of Public Works, Columbia, Md.
N.D. Faber, San Diego County Water Authority, Escondido, Calif.
J. Galleher Jr., Pure Technologies, San Diego, Calif.
J.C. Gehrig, Tarrant Regional Water District, Fort Worth, Tex.
D.H. Marshall, Tarrant Regional Water District, Fort Worth, Tex.
M. Najafi, University of Texas, Center for Underground Infrastructure Research and Education (CUIRE), Arlington, Tex.
R. Ortega, Aurora Technical Services LLC, Houston, Tex.
T. Peng, Metropolitan Water District of Southern California, Los Angeles, Calif.
A. Pridmore, Structural Technologies, Columbia, Md.
S. Rahman, Thompson Pipe Group–Flowtite, Fort Worth, Tex.
A.E. Romer, AECOM, Orange, Calif.
W.A. Sleeper, Metropolitan Water District of Southern California, La Verne, Calif.
A. Wagner, Fyfe Co. LLC, San Diego, Calif.
M.S. Zarghamee, Simpson Gumpertz & Heger Inc., Waltham, Mass.
The AWWA Standards Committee on Concrete Pressure Pipe, which reviewed and approved this standard, had the following personnel at the time of approval:

Wayne R. Brunzell, Chair
Wylie C. Duke, Vice Chair
Richard I. Mueller, Secretary

General Interest Members

H.H. Bardakjian, Consulting Engineer, Glendale, Calif.
G.E.C. Bell, HDR Engineering Inc., Claremont, Calif.
W.R. Brunzell, Brunzell Associates Ltd., Wilmette, Ill.
B.C. Coltharp, Freese and Nichols Inc., Dallas, Tex.
D. Dechant, Dechant Infrastructure Services, Aurora, Colo.
F.S. Kurtz, Standards Engineer Liaison, AWWA, Denver, Colo.
S.A. McKelvie, HDR Engineering Inc., Boston, Mass.
J.J. Roller, CTLGroup, Skokie, Ill.
A.E. Romer, AECOM, Orange, Calif.
T.A. Tovey, Jacobs Engineering, Portland, Ore.
A.W. Tremblay, Tipp City, Ohio
M.S. Zarghamee, Simpson Gumpertz & Heger Inc., Waltham, Mass.

Producer Members

S.A. Arnaout, Thompson Pipe Group, Grand Prairie, Tex.
G. Bizien, Forterra Pressure Pipe, Saint-Eustache, Que.
K.M. Brown, Vianini Pipe Inc., Somerville, N.J.
G.A. Davidenko, Northwest Pipe Company, Saginaw, Tex.
M. DeFranco,† DECAST Ltd., Utopia, Ont.
V. DeGrande,† Ameron Water Transmission Group, Rancho Cucamonga, Calif.
B.D. Keil,† Northwest Pipe Company, Draper, Utah
R.I. Mueller, American Concrete Pressure Pipe Association, Hayden, Idaho
J. Olmos, Ameron Water Transmission Group, Rancho Cucamonga, Calif.
J.A. Tully, DECAST Ltd., Utopia, Ont.

* Liaison, nonvoting
† Alternate
User Members

K.A. Danley, Des Moines Water Works, Des Moines, Iowa
W.C. Duke, Bureau of Reclamation, Denver, Colo.
N.D. Faber, San Diego County Water Authority, Escondido, Calif.
J.A. Fleming,* Standards Council Liaison, Greater Cincinnati Water Works, Cincinnati, Ohio
J.C. Gehrig,† Tarrant Regional Water District, Fort Worth, Tex.
W.C. HagenBurger, Beaver Water District, Lowell, Ark.
D.H. Marshall, Tarrant Regional Water District, Fort Worth, Tex.
K.R. Parbhoo, Los Angeles Dept. of Water & Power, Los Angeles, Calif.

* Liaison, nonvoting
† Alternate
Contents

All AWWA standards follow the general format indicated subsequently. Some variations from this format may be found in a particular standard.

<table>
<thead>
<tr>
<th>SEC.</th>
<th>PAGE</th>
<th>SEC.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td></td>
<td>2.3</td>
<td>Design Procedure 17</td>
</tr>
<tr>
<td>I</td>
<td>Introduction</td>
<td>2.4</td>
<td>Design Loads 20</td>
</tr>
<tr>
<td>I.A</td>
<td>Background</td>
<td>2.5</td>
<td>Design Limit States 22</td>
</tr>
<tr>
<td>I.B</td>
<td>History</td>
<td>2.6</td>
<td>Determination of Material Capacities for Design 22</td>
</tr>
<tr>
<td>I.C</td>
<td>Water Quality</td>
<td>2.7</td>
<td>Design for Combined Short-Term and Long-Term Loading 24</td>
</tr>
<tr>
<td>II</td>
<td>Special Issues</td>
<td>2.8</td>
<td>Circumferential Design of CFRP 24</td>
</tr>
<tr>
<td>II.A</td>
<td>Intent and Suitability</td>
<td>2.9</td>
<td>Design for Longitudinal Loads 30</td>
</tr>
<tr>
<td>II.B</td>
<td>Advisory Information on Product Application</td>
<td>2.10</td>
<td>Termination Details 32</td>
</tr>
<tr>
<td>II.C</td>
<td>Qualifications</td>
<td>2.11</td>
<td>Design of CFRP Continuous Over Pipe Joints 33</td>
</tr>
<tr>
<td>II.D</td>
<td>Contractual Relations</td>
<td>2.12</td>
<td>Design Requirements for Lapping 33</td>
</tr>
<tr>
<td>II.E</td>
<td>Limitations</td>
<td>2.13</td>
<td>CFRP Design for Pipes with Inlet or Outlet 34</td>
</tr>
<tr>
<td>III</td>
<td>Use of This Standard</td>
<td>2.14</td>
<td>CFRP Repair of Steel Fittings 34</td>
</tr>
<tr>
<td>III.A</td>
<td>Purchaser Options and Alternatives</td>
<td>3</td>
<td>Materials</td>
</tr>
<tr>
<td>III.B</td>
<td>Modification to Standard</td>
<td>3.1</td>
<td>General 35</td>
</tr>
<tr>
<td>IV</td>
<td>Major Revisions</td>
<td>3.2</td>
<td>CFRP Constituent Materials 35</td>
</tr>
<tr>
<td>V</td>
<td>Comments</td>
<td>3.3</td>
<td>Material System Acceptance Criteria 37</td>
</tr>
</tbody>
</table>

Standard

1 General

1.1 Scope, Purpose, and Application 1
1.2 Definitions 1
1.3 References 6
1.4 Notation 9

2 Design of CFRP Liners

2.1 General 13
2.2 Design Approach 16

4 Installation and Quality Control

4.1 Pre-installation Requirements 46
4.2 Responsibility Allocations by Purchaser................................. 49
4.3 Safety Requirements................................. 49
4.4 CFRP System Installation Requirements............................. 50
4.5 Testing .. 56
4.6 Submittal Requirements................................. 58
4.7 Inspection Requirements................................. 59
4.8 Project Close-out and Maintenance .. 62

5 Verification
5.1 Basis for Rejection .. 63

6 Affidavit of Compliance .. 63

Appendix
A References .. 65

Tables
1 Minimum Environmental Durability Requirements............ 38
2 Minimum Required Characteristic Mechanical Properties in Fiber Direction for CFRP Lamina..... 39
3 Physical Property Requirements 41
4 Maximum Material Adjustment Factor C for Tensile Strength and C’ for Modulus for Different Stress Types and Environmental Exposure Conditions for CFRP System with 50-Year Service Life........ 43
5 Maximum Material Adjustment Factor C for Tensile Strength and C’ for Modulus for Different Stress Types and Environmental Exposure Conditions for CFRP System with Five-Year Service Life....... 43

Figures
1 Ovality (a) and Waviness (b) Imperfections................................. 14
2 Schematics of Termination Concepts at Bell and Spigot Rings 33
3 Schematic of CFRP Strengthening at Outlets (or Inlets)......................... 34