AWWA Standard

This document is an American Water Works Association (AWWA) standard. It is not a specification. AWWA standards describe minimum requirements and do not contain all of the engineering and administrative information normally contained in specifications. The AWWA standards usually contain options that must be evaluated by the user of the standard. Until each optional feature is specified by the user, the product or service is not fully defined. AWWA publication of a standard does not constitute endorsement of any product or product type, nor does AWWA test, certify, or approve any product. The use of AWWA standards is entirely voluntary. This standard does not supersede or take precedence over or displace any applicable law, regulation, or code of any governmental authority. AWWA standards are intended to represent a consensus of the water supply industry that the product described will provide satisfactory service. When AWWA revises or withdraws this standard, an official notice of action will be placed in the Official Notice section of Journal - American Water Works Association. The action becomes effective on the first day of the month following the month of Journal - American Water Works Association publication of the official notice.

American National Standard

An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An American National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an American National Standard does not in any respect preclude anyone, whether that person has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. American National Standards are subject to periodic review, and users are cautioned to obtain the latest editions. Producers of goods made in conformity with an American National Standard are encouraged to state on their own responsibility in advertising and promotional materials or on tags or labels that the goods are produced in conformity with particular American National Standards.

CAUTION NOTICE: The American National Standards Institute (ANSI) approval date on the front cover of this standard indicates completion of the ANSI approval process. This American National Standard may be revised or withdrawn at any time. ANSI procedures require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of ANSI approval. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute, 25 West 43rd Street, Fourth Floor, New York, NY 10036; 212.642.4900; or emailing info@ansi.org.
Committee Personnel

The AWWA Standards Committee on Concrete Pressure Pipe, which reaffirmed this standard without revision, had the following personnel at the time:

Wylie C. Duke, Chair
Richard I. Mueller, Secretary

User Members

K.A. Danley, Des Moines Water Works, Des Moines, Iowa
W.C. Duke, Bureau of Reclamation, Denver, Colo.
N.D. Faber, San Diego County Water Authority, Escondido, Calif.
J.C. Gehrig, Tarrant Regional Water District, Fort Worth, Tex.
W.C. HagenBurger, Beaver Water District, Lowell, Ark.
T. Peng, Metropolitan Water District of Southern California, Los Angeles, Calif.
V.D. Scutelnicu, Los Angeles Dept. of Water & Power, Los Angeles, Calif.
A.F. Williams, Louisville Water Company, Louisville, Ky.

General Interest Members

S.A. Arnaout, Stantec, Dallas, Tex.
H.H. Bardakjian, Consulting Engineer, Glendale, Calif.
W.R. Brunzell, Brunzell Associates Ltd., Wilmette, Ill.
B.C. Coltharp, Freese and Nichols Inc., Dallas, Tex.
D. Faber, (liaison, nonvoting), Standards Council Liaison, Faber & Associates, Columbus, Ohio
F.S. Kurtz, (liaison, nonvoting), Standards Engineer Liaison, AWWA, Denver, Colo.
A.S. Maughn, (alternate), Freese and Nichols Inc., Dallas, Tex.
R. Ortega, Aurora Technical Services LLC, Houston, Tex.
J.J. Roller, CTLGroup, Skokie, Ill.
A.E. Romer, (alternate), AECOM, Orange, Calif.
R.F. Williams, AECOM, Miami, Fla.
M.S. Zarghamee, Simpson Gumpertz & Heger Inc., Waltham, Mass.
Producer Members

K.R. Baas, Thompson Pipe Group – Pressure, Hattiesburg, Miss.
G. Bizien, Forterra Pressure Pipe, St-Eustache, Que., Canada
K.M. Brown, Vianini Pipe Inc., Somerville, N.J.
M. DeFranco, (alternate), DECAST Ltd., Utopia, Ont., Canada
B.D. Keil, Northwest Pipe Company, Draper, Utah
R.D. Mielke, (alternate), Northwest Pipe Company, Raleigh, N.C.
R.I. Mueller, American Concrete Pressure Pipe Association, Hayden, Idaho
S. Theroux, (alternate), Forterra Pressure Pipe, St-Eustache, Que., Canada
J.A. Tully, DECAST Ltd., Utopia, Ont., Canada

* Alternate
Contents

All AWWA standards follow the general format indicated subsequently. Some variations from this format may be found in a particular standard.

<table>
<thead>
<tr>
<th>SEC.</th>
<th>PAGE</th>
<th>SEC.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td></td>
<td>3 Load and Internal-Pressure Combinations</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Introduction</td>
<td>3.1 Notation</td>
<td>8</td>
</tr>
<tr>
<td>I.A</td>
<td>Background</td>
<td>3.2 Load Factors for Limit-States Design</td>
<td>8</td>
</tr>
<tr>
<td>I.B</td>
<td>History</td>
<td>3.3 Minimum Combined Design Loads and Pressures</td>
<td>9</td>
</tr>
<tr>
<td>I.C</td>
<td>Acceptance</td>
<td>3.4 Working Loads and Internal Pressures</td>
<td>9</td>
</tr>
<tr>
<td>II</td>
<td>Special Issues</td>
<td>3.5 Working Plus Transient Loads and Internal Pressures</td>
<td>9</td>
</tr>
<tr>
<td>III</td>
<td>Use of This Standard</td>
<td>3.6 Working Loads and Internal Field-Test Pressures</td>
<td>10</td>
</tr>
<tr>
<td>III.A</td>
<td>Purchaser Options and Alternatives</td>
<td>3.7 Load and Pressure Factors</td>
<td>10</td>
</tr>
<tr>
<td>III.B</td>
<td>Modification to Standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Major Revisions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Comments</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard

1 General

1.1 Scope | 1
1.2 References | 1
1.3 Applications | 2
1.4 Pipe Structure | 3
1.5 Tolerances | 4
1.6 Definitions | 4
1.7 Metric (SI) Equivalents | 4

2 Loads and Internal Pressures

2.1 Notation | 5
2.2 Design Loads and Internal Pressures | 6
2.3 Loads | 6
2.4 Internal Pressures | 7

3 Load and Internal-Pressure Combinations

3.1 Notation | 8
3.2 Load Factors for Limit-States Design | 8
3.3 Minimum Combined Design Loads and Pressures | 9
3.4 Working Loads and Internal Pressures | 9
3.5 Working Plus Transient Loads and Internal Pressures | 9
3.6 Working Loads and Internal Field-Test Pressures | 10
3.7 Load and Pressure Factors | 10

4 Moments and Thrusts

4.1 Notation | 11
4.2 Distribution of Loads | 12
4.3 Moments and Thrusts | 13

5 Design Material Properties

5.1 Notation | 14
5.2 Materials and Manufacturing Standard | 15
5.3 Properties of Core Concrete | 15
5.4 Properties of Coating Mortar | 20
5.5 Properties of Steel Cylinder | 20
5.6 Properties of Prestressing Wire | 22

6 Stresses From Prestressing

6.1 Notation | 23
<table>
<thead>
<tr>
<th>SEC.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Prestress Losses</td>
</tr>
<tr>
<td>6.3</td>
<td>State of Stress With a Single Layer of Prestressing</td>
</tr>
<tr>
<td>6.4</td>
<td>State of Stress With Multiple Layers of Prestressing</td>
</tr>
<tr>
<td>6.5</td>
<td>Modular Ratios</td>
</tr>
<tr>
<td>6.6</td>
<td>Design Creep Factor and Design Shrinkage Strain for Buried Pipe</td>
</tr>
<tr>
<td>6.7</td>
<td>Wire-Relaxation Factor</td>
</tr>
<tr>
<td>7</td>
<td>Criteria for Limit-State Loads and Pressures</td>
</tr>
<tr>
<td>7.1</td>
<td>Notation</td>
</tr>
<tr>
<td>7.2</td>
<td>Limit-States Design</td>
</tr>
<tr>
<td>7.3</td>
<td>Serviceability Limit-States Design Criteria</td>
</tr>
<tr>
<td>7.4</td>
<td>Elastic Limit-States Design Criteria</td>
</tr>
<tr>
<td>7.5</td>
<td>Strength Limit-States Design Criteria</td>
</tr>
<tr>
<td>8</td>
<td>Calculation of Limit-State Loads and Pressures</td>
</tr>
<tr>
<td>8.1</td>
<td>Notation</td>
</tr>
<tr>
<td>8.2</td>
<td>Limit-States Design Procedures</td>
</tr>
<tr>
<td>8.3</td>
<td>Maximum Pressures</td>
</tr>
<tr>
<td>8.4</td>
<td>Maximum Thrust</td>
</tr>
<tr>
<td>8.5</td>
<td>Burst Pressure</td>
</tr>
<tr>
<td>8.6</td>
<td>Radial Tension</td>
</tr>
<tr>
<td>8.7</td>
<td>Combined Loads and Internal Pressures at Design Limit States</td>
</tr>
<tr>
<td>8.8</td>
<td>Lines of Action of Thrusts</td>
</tr>
<tr>
<td>8.9</td>
<td>Conformance With Limit-States Criteria</td>
</tr>
<tr>
<td>9</td>
<td>Design Selection Tables</td>
</tr>
<tr>
<td>9.1</td>
<td>Design Example 1</td>
</tr>
<tr>
<td>9.2</td>
<td>Design Example 2</td>
</tr>
<tr>
<td>9.3</td>
<td>Design Example 3</td>
</tr>
<tr>
<td>9.4</td>
<td>Lined-Cylinder Pipe Standard Prestress Design Tables</td>
</tr>
<tr>
<td>A</td>
<td>Commentary</td>
</tr>
<tr>
<td>B</td>
<td>References</td>
</tr>
<tr>
<td>C</td>
<td>Pipe-Design Example</td>
</tr>
</tbody>
</table>

Appendixes

A Commentaty

B References

C Pipe-Design Example

Figures

1 Schematic Pipe-Wall Cross Sections for LCP and ECP

2 Stress–Strain Relationships for Concrete And Mortar in Tension and Compression

3 Stress–Strain Relationship for Steel Cylinder in Tension and Compression

4 Stress–Strain Relationship for 6-Gauge Prestressing Wire in Tension After Wrapping at \(f_{fg} \)

5 Schematic of Strain and Stress Distributions in Pipe-Wall Cross-Section at Invert and Crown

6 Schematic of Strain and Stress Distributions in Pipe-Wall Cross-Section at Springline
7 Schematic of Strain and Stress
Distributions for Computation of
M_2-Moment Limit for Ultimate
Compressive Strength of Core
Concrete................................. 51

8 Schematic of Strain and Stress
Distributions for Computation
of M_1-Moment Limit for
Ultimate Compressive Strength
of Coating.............................. 53

9 Bedding Details for Prestressed Concrete
Cylinder Pipe Embankment
Condition.............................. 79

A.1 Mean Annual Number of Days
Maximum Temperature of 90°F
(32°C) and Above, Except 70°F
(21°C) and Above in Alaska...... 87

A.2 Mean Relative Humidity
(January–March) 88

A.3 Mean Relative Humidity
(April–June) 89

A.4 Mean Relative Humidity
(July–September) 90

A.5 Mean Relative Humidity
(October–December) 91

Tables
1 Load and Pressure Factors for
Embedded-Cylinder Pipe 10

2 Load and Pressure Factors for
Lined-Cylinder Pipe 11

3 Design Load Combinations and
Calculation References for
Embedded-Cylinder Pipe
Criteria................................. 38

4 Design Load Combinations and
Calculation References for
Lined-Cylinder Pipe Criteria 39

5 Standard Prestress Design—16 In.
(410 mm) Lined-Cylinder
Pipe.................................... 59

6 Standard Prestress Design—18 In.
(460 mm) Lined-Cylinder
Pipe.................................... 61

7 Standard Prestress Design—20 In.
(510 mm) Lined-Cylinder
Pipe.................................... 63

8 Standard Prestress Design—24 In.
(610 mm) Lined-Cylinder
Pipe.................................... 65

9 Standard Prestress Design—30 In.
(760 mm) Lined-Cylinder
Pipe.................................... 67

10 Standard Prestress Design—36 In.
(910 mm) Lined-Cylinder
Pipe.................................... 69

11 Standard Prestress Design—42 In.
(1,070 mm) Lined-Cylinder
Pipe.................................... 71

12 Standard Prestress Design—48 In.
(1,220 mm) Lined-Cylinder
Pipe.................................... 73

13 Standard Prestress Design—54 In.
(1,370 mm) Lined-Cylinder
Pipe.................................... 75

14 Standard Prestress Design—60 In.
(1,520 mm) Lined-Cylinder
Pipe.................................... 77