Contents

List of Figures, v
List of Tables, xii
Preface, xi
Acknowledgments, xiii

Chapter 1 History and Use
1.1 Introduction, 1
1.2 History, 1
1.3 Applications, 2
1.4 Standards, Specifications, and Reference Documents, 2
1.5 Terminology, 7

Chapter 2 Materials, Properties, and Characteristics
2.1 General, 9
2.2 Characteristics 9
2.3 The Material System, 10
2.4 Other Components, 12
2.5 Physical Properties, 12
2.6 Mechanical Properties, 14

Chapter 3 Manufacturing
3.1 Introduction, 17
3.2 filament Winding, 17
3.3 Centrifugal Casting, 21
3.4 Reference, 22

Chapter 4 Hydraulics
4.1 Hydraulic Characteristics, 23
4.2 Preliminary Pipe Sizing, 23
4.3 Typical Pipe Diameters, 24
4.4 Pressure Reduction Calculations, 24
4.5 Head Loss Fittings, 29
4.6 Energy Consumption Calculation Procedure, 29
4.7 Pressure Surge, 31
4.8 Design Examples, 32
4.9 References, 37

Chapter 5 Buried Pipe Design
5.1 Introduction, 39
5.2 Terminology, 40
5.3 Design Conditions, 42
5.4 Pipe Properties, 42
5.5 Installation Parameters, 43
5.6 Design Procedure, 43
5.7 Design Calculations and Requirements, 44
5.8 Axial Loads, 61
5.9 Special Design Considerations, 61
Figures

2-1 Typical circumferential stress-strain curves, 15
2-2 Typical axial stress-strain curves, 15
2-3 Static versus cyclic pressure testing, 16

3-1 Filament winding process, 18
3-2 Application of impregnated glass reinforcement of a filament-wound pipe, 19
3-3 Continuous advancing mandrel method, 19
3-4 Finished pipe emerging from curing oven, 20
3-5 Preformed glass reinforcement sleeve method, 20
3-6 Chopped glass reinforcement method, 21
3-7 Application of glass, resin, and sand, 22

4-1 Friction pressure loss due to water flow through fiberglass pipe, 25
4-2 Moody diagram for determination of friction factor for turbulent flow, 28

5-1 Distribution of AASHTO HS-20 or HS-25 live load through granular fill for $h \leq 45$ in. (1.14 m), 50
5-2 AASHTO HS-20 live load, soil load (120 lb/ft3), and total load graph, 52
5-3 AASHTO HS-25 live load, soil load (120 lb/ft3), and total load graph, 53
5-4 Cooper E80 live load, soil load (120 lb/ft3), and total load graph, 53

6-1 Trench cross-section terminology, 72
6-2 Examples of bedding support, 80
6-3 Accommodating differential settlement, 81
6-4 Cross-over of adjacent piping systems, 82
6-5 Proper compaction under haunches, 83

7-1 Thrust force definitions, 88
7-2 Typical thrust blocking of a horizontal bend, 89
7-3 Typical profile of vertical bend thrust blocking, 91
7-4 Restraint of thrust at deflected joints on long-radius horizontal curves, 92
7-5 Computation diagram for earth loads on trench conduits, 94
7-6 Restraint of uplift thrust at deflected joints on long-radius vertical curves, 95
7-7 Thrust restraint with tied joints at bends, 95
7-8 Length of tied pipe on each leg of vertical (uplift) bend, 97

8-1 Typical expansion joint installation, 102
8-2 Expansion loop dimensions, 103
8-3 Directional change, 104
8-4 Guide support, 105
8-5 Anchor support, 106
8-6 Typical support, 107
8-7 Fiberglass wear protection cradle, 109
8-8 Steel wear protection cradle, 109
8-9 Vertical support, 110
9-1 Tapered bell-and-spigot joint, 121
9-2 Straight bell and straight spigot joint, 121
9-3 Tapered bell and straight spigot joint, 122
9-4 Overlay joint construction, 122
9-5 Overlay joint, 122
9-6 Tapered ends overlay joint, 123
9-7 Bell-and-spigot overlay joint, 123
9-8 Single-gasket bell-and-spigot joint, 123
9-9 Single-gasket spigot, 124
9-10 Double-gasket bell-and-spigot joint, 124
9-11 Double-gasket spigot, 124
9-12 Gasketed coupling joint, 125
9-13 Gasketed coupling joint—cross section, 125
9-14 Restrained-gasketed bell-and-spigot joint, 125
9-15 Restrained-gasketed coupling joint, 126
9-16 Restrained-gasketed threaded bell-and-spigot O-ring joint, 126
9-17 Fiberglass flange to fiberglass and steel flange joint, 127
9-18 Fiberglass flanges to flanged steel valve connection, 127
9-19 Fiberglass flange with grooved face for O-ring seal, 127
9-20 Mechanical coupling joint, 128
9-21 Compression molded fittings, 131
9-22 Flanged compression molded fittings, 131
9-23 Mitered fitting configurations, 132
9-24 Mitered fitting, 132
9-25 Mitered fitting fabrication, 132
9-26 Mitered fittings, 133
9-27 Mitered fitting field fabrication, 133
9-28 Fittings field assembly, 133

10-1 Pipe shipment by truck, 136
10-2 Single-sling handling, 137
10-3 Double-sling handling, 137
10-4 Unitized small-diameter bundle, 137
10-5 Unitized load handling, 138
10-6 Handling nested pipes, 138
10-7 Denesting pipes, 139
10-8 Pipe stacking, 140
10-9 Patch, 141
10-10 Cut out and replace, 141
10-11 Steel coupling, 141
Tables

2-1 Mechanical properties range, 13

4-1 Typical K factors for fiberglass fittings, 29

5-1 Shape factors D_i, 47
5-2 AASHTO HS-20, HS-25, and Cooper E80 live loads (psi), 52
5-3 Soil classification chart, 55
5-4 M_{sb} based on soil type and compaction condition (see chapter 6), 56
5-5 Values for the soil support combining factor S_c, 58
5-6 Values for the constrained modulus of the native soil at pipe zone elevation, 58
5-7 Conditions and parameters for design example, 62

6-1 Soil classes, 74
6-2 Recommendations for installation and use of soils and aggregates for foundation and pipe zone embedment, 75
6-3 Maximum particle size for pipe embedment, 76

7-1 Horizontal soil-bearing strengths, 90

8-1 Minimum support width for 120° contact supports, 108
8-2 Design example calculations, 113
Preface

This manual is the third edition of AWWA Manual M45, Fiberglass Pipe Design. It provides the reader with both technical and general information to aid in the design, specification, procurement, installation, and understanding of fiberglass pipe and fittings. The manual is a discussion of recommended practice, not an AWWA standard calling for compliance with certain requirements. It is intended for use by utilities and municipalities of all sizes, whether as a reference book or textbook for those not fully familiar with fiberglass pipe and fitting products. Design engineers and consultants may use this manual in preparing plans and specifications for new fiberglass pipe design projects.

The manual covers fiberglass pipe and fitting products and certain appurtenances and their application to practical installations, whether of a standard or special nature. For adequate knowledge of these products, the entire manual should be studied. Readers will also find the manual a useful source of information when assistance is needed with specific or unusual conditions. The manual contains a list of applicable national standards, which may be purchased from the respective standards organizations (e.g., American Water Works Association, American Society for Testing and Materials, etc.).

This third edition includes updates to soil classifications that unify the terminology for all piping materials, corrections to the pressure surge calculations, and editorial changes to improve understanding and clarity of content.
Acknowledgments

The American Water Works Association (AWWA) Fiberglass Pipe Design Manual Subcommittee, which developed this edition of the M45 manual, had the following personnel at the time:

Richard C. Turkopp, Chair

S. Curran, Fiberglass Tank and Pipe Institute, Houston, Texas (AWWA)
D.M. Flancher*, Staff Engineer Liaison, AWWA, Denver, Colo. (AWWA)
N.E. Kampbell, Rehabilitation Resource Solutions Inc., LLS, Hilliard, Ohio (AWWA)
D. Kozman, A.W. Technik, Hilliard, Ohio (AWWA)
A.M. May, Alfred M. May Consulting Services, Little Rock, Ark. (AWWA)
T.J. McGrath, TJ McGrath, LLC, Arlington, Mass. (AWWA)
L. Pearson, Vero Beach, Fla. (AWWA)
P.A. Sharff, Simpson Gumpertz Heger Inc., Waltham, Mass. (AWWA)
R. Turkopp, Hobas Pipe USA, Houston, Texas (AWWA)

This edition of the manual was also reviewed and approved by the AWWA Standards Council and the Standards Committee on Thermosetting Fiberglass Reinforced Plastic Pipe. The Standards Committee on Thermosetting Fiberglass Reinforced Plastic Pipe had the following personnel at the time of approval:

Phillip Sharff, Chair

Utility Members
L. Bowles, US Bureau of Reclamation, Denver, Colo. (AWWA)

General Interest Members
S.J. Abrera Jr., South Pasadena, Calif. (AWWA)
J.P. Biro, Houston, Texas (AWWA)
D.M. Flancher*, Staff Engineer Liaison, AWWA, Denver, Colo. (AWWA)
M.W. Grimm*, The Cadmus Group Inc., Happy Valley, Ore. (AWWA)
J.K. Jeyapalan, Dr. Jeyapalan and Associates, New Milford, Conn. (AWWA)
R.A. Johnson, Russcor Engineering, Naples, Fla. (AWWA)
N.E. Kampbell, Rehabilitation Resource Solutions LLC, Hilliard, Ohio. (AWWA)
T.J. McGrath, TJ McGrath, LLC, Arlington, Mass. (AWWA)
R.S. Morrison, Jason Consultants, Columbus, Ohio (AWWA)
L. Pearson, Vero Beach, Fla. (AWWA)
P.A. Sharff, Simpson Gumpertz and Heger Inc., Waltham, Mass. (AWWA)

Producer Members
R. Turkopp, Hobas Pipe USA, Houston, Texas (AWWA)
M. Turk†, Future Pipe Industries Inc., Houston, Texas (AWWA)
S. Khan†, Amiantit Fiberglass Industries, LTD, Saudi Arabia (AWWA)

* Liaison, nonvoting
† Nonvoting
History and Use

1.1 INTRODUCTION
Fiberglass pipe is made from glass fiber reinforcements embedded in, or surrounded by, cured thermosetting resin. This composite structure may also contain aggregate, granular, or platelet fillers; thixotropic agents; and pigments or dyes. By selecting the proper combination of resin, glass fibers, fillers, and design, the fabricator can create a product that offers a broad range of properties and performance characteristics. Over the years, the diversity and versatility of materials used to manufacture fiberglass pipe have led to a variety of names for fiberglass pipe. Among these are reinforced thermosetting resin pipe (RTRP), reinforced polymer mortar pipe (RPMP), fiberglass reinforced epoxy (FRE), glass reinforced plastic (GRP), and fiberglass reinforced plastic (FRP). Fiberglass pipes have also been categorized by the particular manufacturing process—filament winding or centrifugal casting. Frequently, the particular resin used to manufacture the fiberglass pipe—epoxy, polyester, or vinyl ester—has been used to classify or grade fiberglass pipes.

Regardless of the many possible combinations, the most common and useful designation is simply “fiberglass pipe.” This name encompasses all of the various available products and allows consideration as a unique and general class of engineering materials.

1.2 HISTORY
Fiberglass pipe was introduced in 1948. The earliest application for fiberglass piping, and still one of the most widely used, is in the oil industry. Fiberglass pipe was selected as a corrosion-resistant alternative to protected steel, stainless steel, and other more exotic metals. Product lines expanded to include applications of increasingly high pressure and down-hole tubing with threaded connections. In the late 1950s, larger diameters became
available and fiberglass pipe was increasingly used in the chemical process industry because of the pipe’s inherent corrosion-resistant characteristics.

Since the 1960s, fiberglass pipe products have been used for municipal water and sewage applications. Fiberglass pipe combines the benefits of durability, strength, and corrosion resistance, thus eliminating the need for interior linings, exterior coatings, and cathodic protection. Fiberglass pipe systems offer great design flexibility with a wide range of standard pipe diameters and fittings available, as well as an inherent ability for custom fabrication to meet special needs. Fiberglass pipe is available in diameters ranging from 1 in. through 144 in. (25 mm through 3,600 mm). Fiberglass pipe is available in pressure classes ranging from gravity applications through several thousand pounds per square inch (kilopascals). Few countries in the world have not used fiberglass pipe.

1.3 APPLICATIONS

Fiberglass pipe is used in many industries and for a myriad of applications, including
- chemical processes
- desalination
- down-hole tubing and casing
- ducting and vent piping
- geothermal
- industrial effluents
- irrigation
- oil fields
- potable water
- power plant cooling and raw water
- sanitary sewers
- seawater intake and outfalls
- slurry piping
- storm sewers
- water distribution
- water transmission

1.4 STANDARDS, SPECIFICATIONS, AND REFERENCE DOCUMENTS

Many organizations have published nationally recognized standards, test methods, specifications, and recommended practices on fiberglass piping systems and products. These organizations include the American Society for Testing and Materials (ASTM), the American Petroleum Institute (API), the American Society of Mechanical Engineers (ASME), the NSF International (NSF), Underwriters Laboratories (UL), Factory Mutual Research (FM), the American National Standards Institute (ANSI), and the International Organization for Standardization (ISO).

Following is a list of fiberglass pipe standards and specifications that are commonly used in specifying, testing, and using fiberglass piping systems.
1.4.1 Product Specifications and Classifications

General

- **ASTM D2310**: Standard Classification for Machine-Made “Fiberglass” (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe
- **ASTM D2517**: Standard Specification for Reinforced Epoxy Resin Gas Pressure Pipe and Fittings
- **ASTM D2996**: Standard Specification for Filament-Wound “Fiberglass” (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe (Applicable to epoxy, polyester, and furan resins in sizes from 1 in. to 16 in. [25 mm to 400 mm].)
- **ASTM D2997**: Standard Specification for Centrifugally Cast “Fiberglass” (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe (Applicable for 1 in. through 14 in. [25 mm through 350 mm] pipe of polyester or epoxy resins.)
- **ASTM D3262**: Standard Specification for “Fiberglass” (Glass-Fiber-Reinforced Thermosetting-Resin) Sewer Pipe (Applicable for pipes 8 in. through 144 in. [200 mm through 3,700 mm] diameter, with or without siliceous sand, and polyester or epoxy resin.)
- **ASTM D3517**: Standard Specification for “Fiberglass” (Glass-Fiber-Reinforced Thermosetting-Resin) Pressure Pipe (Applicable for pipes 8 in. through 144 in. [200 mm through 3,700 mm] diameter, with or without siliceous sand, and polyester or epoxy resin.)
- **ASTM D3754**: Standard Specification for “Fiberglass” (Glass-Fiber-Reinforced Thermosetting-Resin) Sewer and Industrial Pressure Pipe (Applicable for 8 in. through 144 in. [200 mm through 3,700 mm] diameter, with or without siliceous sand, and polyester or epoxy resin.)
- **ASTM D4024**: Standard Specification for Machine Made “Fiberglass” (Glass-Fiber-Reinforced Thermosetting-Resin) Flanges (Applicable for ½ in. through 24 in. [13 mm through 600 mm] ANSI B16.5 150 lb [70 kg] bolt circle flanges.)
- **ASTM D4161**: Standard Specification for “Fiberglass” (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe Joints Using Flexible Elastomeric Seals
- **ASTM F1173**: Standard Specification for Thermosetting Resin Fiberglass Pipe Systems to Be Used for Marine Applications
- **API 15LR**: Specification for Low Pressure Fiberglass Line Pipe (Applicable to 2 in. through 24 in. [50 mm through 600 mm] diameter pipe of epoxy or polyester resin for use at cyclic pressures to 1,000 psi [6,895 kPa].)
- **API 15HR**: Specification for High Pressure Fiberglass Line Pipe (Applicable to 1 in. through 10 in. [25 mm through 250 mm] pipe and fittings for operating pressures of 500 psi [3,500 kPa] to 5,000 psi [35,000 kPa].)
- **ANSI/AWWA C950**: AWWA Standard for Fiberglass Pressure Pipe
US military (MIL) specifications

MIL P24608 Specification for epoxy resin pipe from ½ in. through 12 in. (13 mm through 300 mm) diameters for 200 psig (1,379 kPa) service at 150°F (66°C) for US Navy shipboard applications

MIL P28584A Specification for epoxy resin pipe and fittings from 2 in. through 12 in. (50 mm through 300 mm) diameter for use as Steam Condensate Return Lines in continuous service at 125 psig (862 kPa) and 250°F (121°C)

MIL P29206A Specification for epoxy or polyester pipe and fittings 2 in. through 12 in. (50 mm through 300 mm) in diameter for POL services to 150°F (66°C) and 150 psig (1,034 kPa) with surges to 250 psig (1,724 kPa)

1.4.2 Recommended Practices

Dimensions

ASTM D3567 Standard Practice for Determining Dimensions of “Fiberglass” (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe and Fittings

Installation

ASTM D3839 Standard Guide for Underground Installation of “Fiberglass” (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe

API RP15TL4 Care and Use of Fiberglass Tubulars

API RP1615 Installation of Underground Petroleum Storage Systems

1.4.3 Standard Test Methods

Tensile properties

ASTM D638 Standard Test Method for Tensile Properties of Plastics

ASTM D2105 Standard Test Method for Longitudinal Tensile Properties of Fiberglass (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe and Tube

ASTM D2290 Standard Test Method for Apparent Hoop Tensile Strength of Plastic or Reinforced Plastic Pipe

Compressive properties

Bending properties

ASTM D2925 Standard Test Method for Beam Deflection of Fiberglass (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe Under Full Bore Flow
Long-term internal pressure strength

ASTM D1598
Standard Test Method for Time to Failure of Plastic Pipe Under Constant Internal Pressure

ASTM D2143
Standard Test Method for Cyclic Pressure Strength of Reinforced, Thermosetting Plastic Pipe

ASTM D2992
Standard Practice for Obtaining Hydrostatic or Pressure Design Basis for “Fiberglass” (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe and Fittings

Pipe stiffness

ASTM D2412
Standard Test Method for Determination of External Loading Characteristics of Plastic Pipe by Parallel Plate Loading

External pressure

ASTM D2924
Standard Test Method for External Pressure Resistance of “Fiberglass” (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe

Chemical resistance

ASTM C581
Standard Practice for Determining Chemical Resistance of Thermosetting Resins Used in Glass Fiber Reinforced Structures Intended for Liquid Service

ASTM D3681
Standard Test Method for Chemical Resistance of “Fiberglass” (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe in a Deflected Condition

ASTM D5365
Standard Test Method for Long Term Ring Bending Strain of “Fiberglass” (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe

1.4.4 Product Listings, Approvals, and Piping Codes

NSF International—Standard Numbers 14 and 61. Tests and lists fiberglass pipe, fittings, and adhesives for use in conveying potable water. Additionally, tests and certifies products as to their classification to an applicable national standard or for special properties (Standard 14 only).

Underwriters Laboratories Inc. Provides established standards for testing and listing fiberglass pipe for use as underground fire water mains and underground transport of petroleum products.

Factory Mutual Research. Has established an approval standard for plastic pipe and fittings for underground fire protection service.

ANSI/ASME B31.1—Power Piping Code. This code prescribes minimum requirements for the design, materials, fabrication, erection, testing, and inspection of power and auxiliary service piping systems for electric generation stations, industrial institutional plants, and central and district heating plants.

ANSI/ASME B31.3—Chemical Plant and Petroleum Refinery Piping Code. This code lists some ASTM, AWWA, and API fiberglass pipe specifications as acceptable for use within the code and establish criteria for their installation and use. These codes, in addition to other ASME codes, establish rules regarding the application of fiberglass piping and provide engineering guidance for the use of fiberglass materials.
ANSI/ASME B31.8—Gas Transmission and Distribution Piping Systems Code. This code lists fiberglass pipe manufactured in compliance with ASTM D2517 as acceptable for use within the code.

Department of Transportation, Title 49, Part 192. This is a code of federal regulations that covers the transportation of natural and other gases by pipeline. Minimum federal standards are included.

ASME Boiler and Pressure Vessel Code Case N155. This code provides the rules for the construction of fiberglass piping systems for use in section III, division I, class 3 applications in nuclear power plants.

1.4.5 International Organization for Standardization Standards and Specifications (ISO)

ISO has issued many standards, test methods, and technical reports relating to fiberglass piping systems and products. Many of their titles, as well as the general content, are very similar to the US-issued standards covered previously.

Product specifications

ISO 10467 Plastics piping systems for pressure and non-pressure drainage and sewerage—Glass-reinforced thermosetting plastics (GRP) systems based on unsaturated polyester (UP) resin

ISO 10639 Plastics piping systems for pressure and non-pressure water supply—Glass-reinforced thermosetting plastics (GRP) systems based on unsaturated polyester (UP) resin

Test methods

ISO 7432 Glass-reinforced thermosetting plastics (GRP) pipes and fittings—Test methods to prove the design of locked socket-and-spigot joints, including double-socket joints, with elastomeric seals

ISO 7509 Plastics piping systems—Glass-reinforced thermosetting plastics (GRP) pipes—Determination of time to failure under sustained internal pressure

ISO 7510 Plastics piping systems—Glass-reinforced thermosetting plastics (GRP) components—Determination of the amounts of constituents using the gravimetric method

ISO 7511 Plastics piping systems—Glass-reinforced thermosetting plastics (GRP) pipes and fittings—Test methods to prove the leak tightness of the wall under short-term internal pressure

ISO 7684 Plastics piping systems—Glass-reinforced thermosetting plastics (GRP) pipes—Determination of the creep factor under dry conditions

ISO 7685 Plastics piping systems—Glass-reinforced thermosetting plastics (GRP) pipes—Determination of initial specific ring stiffness

ISO 8483 Plastics piping systems from pressure and non-pressure drainage and sewerage glass-reinforced thermosetting plastics (GRP) systems based on polyester (UP) resin—Test methods to prove the design of bolted flanged joints

ISO 8513 Plastics piping systems—Glass-reinforced thermosetting plastics (GRP) pipes—Determination of longitudinal tensile properties
ISO 8521 Plastics piping systems—Glass-reinforced thermosetting plastics (GRP) pipes—Test methods for the determination of the apparent initial circumferential tensile strength

ISO 8533 Plastics piping systems for pressure and nonpressure drainage and sewerage glass-reinforced thermosetting plastics (GRP) systems based on unsaturated polyester (UP) resin—Test methods to prove the design of cemented or wrapped joints

ISO 8639 Glass-reinforced thermosetting plastics (GRP) pipes and fittings—Test methods for leak tightness of flexible joint

ISO 10466 Plastics piping systems—Glass-reinforced thermosetting plastics (GRP) pipes—Test method to prove the resistance to initial ring deflection

ISO 10468 Glass-reinforced thermosetting plastics (GRP) pipes—Determination of the long-term specific ring creep stiffness under wet conditions and the calculation of the wet creep factor

ISO 10471 Glass-reinforced thermosetting plastics (GRP) pipes—Determination of the long-term ultimate bending strain and the long-term ultimate relative ring deflection under wet conditions

ISO 10928 Plastics piping systems—Glass-reinforced thermosetting plastics (GRP) pipes and fittings—Methods for regression analysis and their use

ISO 10952 Plastics piping systems—Glass-reinforced thermosetting plastics (GRP) pipes and fittings—Determination of the resistance to chemical attack from the inside of a section in a deflected condition

ISO 14828 Glass-reinforced thermosetting plastics (GRP) pipes—Determination of the long-term specific ring relaxation stiffness under wet conditions and the calculation of the wet relaxation factor

ISO 15306 Glass-reinforced thermosetting plastics (GRP) pipes—Determination of the resistance to cyclic internal pressure

Technical reports
ISO/TR 10465-1 Underground installation of flexible glass-reinforced thermosetting resin (GRP) pipes—Part 1: Installation procedures
ISO/TR 10465-2 Underground installation of flexible glass-reinforced thermosetting resin (GRP) pipes—Part 2: Comparison of static calculation methods
ISO/TR 10465-3 Underground installation of flexible glass-reinforced thermosetting resin (GRP) pipes—Part 3: Installation parameters and application limits

1.5 TERMINOLOGY

Fiberglass pipe users may encounter some unique or unfamiliar terminology. A glossary of terms used in this manual and by those in the fiberglass pipe industry is provided at the end of this manual.