Steel
Water Storage
Tanks
About the American Water Works Association

AWWA is the authoritative resource for knowledge, information and advocacy to improve the quality and supply of water in North America and beyond. AWWA is the largest organization of water professionals in the world. AWWA advances public health, safety, and welfare by uniting the efforts of the full spectrum of the water community. Through our collective strength, we become better stewards of water for the greatest good of the people and the environment.

About the Technical Editor

Stephen W. Meier (P.E., S.E., Tank Industry Consultants) is noted as one of the foremost structural engineering experts for the design, construction, and rehabilitation of concrete and steel nonbuilding structures, with specialized expertise in seismic design. He has served as principal structural engineer in responsible charge for numerous storage tank construction projects, as well as seismic design and retrofit projects, around the world. As managing principal at Tank Industry Consultants (TIC), he oversees TIC’s staff of civil, structural, and mechanical engineers on projects throughout the United States. His design and seismic expertise is especially valuable during the evaluation, design, specification, and construction phases of steel tanks and seismic retrofits. Meier has led many standards-making committees, including American Water Works Association’s Steel Tank Committee, Committee on Welded Steel Tanks, and the D170 Composite Elevated Water Tank Committee. He has also served on the Steel Tank Institute/Steel Plate Fabricators Association’s Subcommittee on Concrete Pedestal Tanks and on its Seminar Subcommittee. For the American Concrete Institute, he has served on Committee 371 on Concrete Pedestal Tanks and Committee 376 on Concrete Structures for Refrigerated Liquefied Gas Containment. He is past chair of the National Earthquake Hazards Reduction Program Technical Subcommittee 13—Nonbuilding Structures. Structures.
Cataloging-in-Publication Data is on file with the Library of Congress

McGraw-Hill books are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Steel Water Storage Tanks: Design, Construction, Maintenance, and Repair

Copyright © 2010 by American Water Works Association. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.

1 2 3 4 5 6 7 8 9 0 FGR/FGR 1 5 4 3 2 1 0
ISBN 978-0-07-154938-7
MHID 0-07-154938-2

The pages within this book were printed on acid-free paper.

McGraw-Hill Team

Sponsoring Editor
Larry S. Hager

Acquisitions Coordinator
Alexis Richard

Editorial Supervisor
David E. Fogarty

Project Manager
Satvinder Kaur, Aptara, Inc.

Copy Editor
Sunil Kumar Ojha, Aptara, Inc.

Proofreader

Indexer

Production Supervisor
Pamela A. Pelton

Composition
Aptara

Art Director, Cover
Jeff Weeks

AWWA Team

Sponsoring Editor
Gay Porter De Nileon

Project Manager
Linda Bevard

Art/Graphics Coordinators
Cheryl Armstrong, Karen Staab, Jan Bailey

Information contained in this work has been obtained by The McGraw-Hill Companies, Inc. (“McGraw-Hill”) from sources believed to be reliable. However, neither McGraw-Hill nor its authors guarantee the accuracy or completeness of any information published herein, and neither McGraw-Hill nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw-Hill and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought.
Contents

Contributors ... ix
List of Figures .. xi
List of Tables ... xvii
Preface .. xix
Acknowledgments .. xxi

1 Tank History, Typical Configurations, Locating, Sizing, and Selecting 1
 Reservoirs ... 4
 Standpipes ... 4
 Elevated Tanks 15
 Composite Elevated Tanks 22
 Locating, Sizing, and Selecting a Water Tank 24

2 Selecting and Specifying Appurtenances 47
 Ground-Supported Tanks 48
 Elevated Tanks 72

3 Controlling Corrosion 81
 The Nature of Corrosion 81
 Principles of Cathodic Protection 84
 Cathodic Protection Design 87
 Paint (Coating) Basics 91
 Coating Calculations 102
 Surface Preparation 105
 Coating Selection 110
 Application Techniques and Equipment 112
 Inspection of Linings 123

4 Contractual Considerations 131
 Competitive Bidding 131
 Contract Documents 135
 Design Standards 136
 Factors in Competitive Bidding 140
 General Conditions and Supplementary General Conditions 144
 Technical Specifications—New Tanks 152

5 Foundations .. 155
 Appropriate Foundation Type 155
Contents

Location/Orientation .. 156
Establishing Existing and Final Grade Elevations 157
Minimum Depth and Projection Above Grade 157
Excavation Requirements ... 158
Site Access and Drainage .. 158
Water Table and Perched Water 159
Soils and Geotechnical Investigations 159
Structural Concrete .. 166
Shallow Foundations .. 173
Pile Foundations ... 188
Drilled-Pier (Caisson) Foundations 198
Reservoir and Standpipe Foundations 204
Anchor Bolts (Rods) .. 206
Foundations in Regions of High Seismic Risk 209
Special Considerations .. 211
Conclusion ... 216
Foundation Design Example 217

6 Construction of Welded-Steel Water-Storage Tanks 227
Steel Fabrication ... 227
Welding ... 233
Construction .. 237
Inspection and Testing .. 256

7 Construction of Bolted-Steel Water-Storage Tanks 261
Erection of the Tank .. 261
Unloading and Storage ... 263
Concrete Floor Construction 263
Steel Floor Construction .. 267
Tank Construction .. 268
Roof Installation .. 273
Tank Appurtenance and Accessory Installation 276
Completion .. 280

8 Inspecting New-Tank Construction 283
Responsibility for Quality .. 283
The Foundation and Composite-Tank Pedestal 284
Fabrication ... 286
Steel Delivery .. 287
Tank Erection .. 287
Surface Regularity .. 290
Field Cleaning and Coating 290
Shop-Applied Coatings .. 292
Mechanical and Electrical Appurtenances 293
Contents

9 Operation
- Modeling of Tanks in Water Distribution Systems ... 295
- Water Quality Issues for Water Storage Tanks in Distribution Systems 298
- Water Storage Tank Applications and Their Operation ... 305
- Fluid Dynamics in Tanks ... 341
- Mixing Theory ... 349
- Flow Diffusers ... 362
- Tank Venting .. 364
- Telemetry .. 367
- Energy Conservation in the Distribution System .. 376

10 Maintenance, Inspection, and Repair
- Tank Evaluations and Resources .. 381
- Inspection and Repair by Operator .. 383
- Professional Evaluation .. 390
- Tank Inspection Issues ... 396

11 Potable Water Security Background
- Threats to Water Systems .. 399
- General Site Considerations .. 403
- General Tank Considerations .. 405
- Water-Storage Vulnerabilities ... 411
- Effective Security/Risk-Reduction Practices .. 412

12 Tank Rehabilitation
- Developing Specifications ... 433
- Environmental/Worker Safety .. 435
- Coating Systems ... 437
- Overseeing Painting and Maintenance ... 442
- Contract Document and Specification Options .. 445
- Contract Administration .. 446
- First Anniversary Evaluation .. 447

Appendix A ... 449

Appendix B ... 461

Index ... 000
Contributors

Mike Bauer Tnemec Company (Chap. 3: Controlling Corrosion)
(Chap. 10: Maintenance, Inspection, and Repair)
Joe Davis Tnemec Company (Chap. 3: Controlling Corrosion)
(Chap. 4: Contractual Considerations)
Richard Field, P.E., S.E. Engineered Storage Products Company
(retired) (Chap. 7: Construction of Bolted-Steel Water-Storage Tanks)
Donita Fredricks, P.E. CB&I, Inc. (Chap. 6: Construction of Welded-Steel Water-Storage Tanks)
Ira M. Gabin, P.E. Dixon Engineering, Inc. (Chap. 1: Tank History, Typical Configurations, Locating, Sizing, and Selecting)
Kevin J. Gallagher, P.E. Caldwell Tanks (Chap. 5: Foundations)
(Chap. 2: Selecting and Specifying Appurtenances)
(Chap. 2: Selecting and Specifying Appurtenances)
(Chap. 2: Selecting and Specifying Appurtenances)
José N. Hernández, P.E. City of Cleveland Division of Water
(Chap. 9: Operation)
Richard A. Horn, P.E. CB&I (Chap. 1: Tank History, Typical Configurations, Locating, Sizing, and Selecting)
Anthony D. Ippoliti Sherwin-Williams
(Chap. 3: Controlling Corrosion)
Keith McGuire, P.E. Columbian TecTank (Chap. 7: Construction of Bolted-Steel Water-Storage Tanks)
John W. McLaughlin, P.E. Jordan, Jones and Goulding
(Chap. 11: Potable Water Security Background)
Contributors

James E. Noren, P.E. Advance Tank and Construction Company
(Chap. 6: Construction of Welded-Steel Water-Storage Tanks)

Steven P. Roetter, P.E. Tank Industry Consultants
(Chap. 8: Inspecting New-Tank Construction)

Jeffrey Rog Corrpro (Chap. 3: Controlling Corrosion)

Sami F. Sarrouh, P.E. Brown and Caldwell (Chap. 9: Operation)

Gregory R. “Chip” Stein, P.E. Tank Industry Consultants
(Chap. 12: Tank Rehabilitation)

Sayed H. Stoman, Ph.D., P.E., S.E., M.L.S.E. Caldwell Tanks
(Chap. 5: Foundations)
List of Figures

1-1 Geodesic dome on bolted-steel reservoir 2
1-2 Witch’s hat roof design .. 3
1-3 Legged tank with radial arm design 3
1-4 Welded-steel reservoir ... 5
1-5 Cross-sectional view of welded-steel reservoir 5
1-6 Bolted-steel reservoir, glass fused to steel 6
1-7 Cross-sectional view of bolted-steel reservoir 6
1-8 Welded-steel standpipe with decorative pilasters 9
1-9 Cross-sectional view of typical welded-steel standpipe 10
1-10 Bolted-steel standpipe .. 11
1-11 Cross-sectional view of bolted-steel standpipe 11
1-12 Tank with column- and rafter-supported cone roof 13
1-13 Column- and rafter-supported roof with knuckle 13
1-14 Self-supporting dome roof or umbrella roof 14
1-15 Self-supporting ellipsoidal roof 15
1-16 Double-ellipsoidal tank 16
1-17 Cross-sectional view of double-ellipsoidal tank 17
1-18 Medium-capacity welded-steel elevated tank 18
1-19 Cross-sectional view of medium-capacity, torus-bottom welded-steel elevated tank 19
1-20 Large-capacity elevated tank 20
1-21 Cross-sectional view of large-capacity, multicolumn elevated tank .. 21
1-22 Spherical single-pedestal tanks give pleasant silhouette ... 22
1-23 Cross-sectional view of small-capacity spherical single-pedestal tank ... 23
1-24 Alternative single-pedestal tank design 24
1-25 Large-capacity single-pedestal elevated tank 25
List of Figures

1-26 Cross-sectional view of large-capacity single-pedestal elevated tank .. 26
1-27 Folded-plate design of a modified single-pedestal tank support .. 27
1-28 Cross-sectional view of a modified single-pedestal tank ... 28
1-29 Composite elevated tank ... 29
1-30 Cross-sectional view of composite elevated tank .. 30
1-31 Pressure ranges for utilities .. 32
1-32 Providing pressure using gravity flow ... 34
1-33 Typical water usage ... 34
1-34 Sample electric rates ... 35
1-35 Higher rates during peak demand .. 35
1-36 Average daily water usage per capita .. 43
2-1 Inward-opening shell manhole detail .. 49
2-2 Outward-opening shell manhole detail .. 49
2-3 Flush-type cleanout .. 50
2-4 Recessed inlet–outlet pipe bottom connection detail .. 51
2-5 Nonrecessed inlet–outlet bottom connection ... 52
2-6 Overflow air break with flap valve ... 54
2-7 Exterior caged ladder details ... 56
2-8 Exterior circular stairway .. 57
2-9 Safety rail enclosure .. 61
2-10 Safe-climbing rail for an outside ladder .. 62
2-11 Safety cable system ... 63
2-12 Roof manway assembly details .. 64
2-13 Pan deck vent detail ... 65
2-14 Typical clog-resistant vent detail. .. 66
2-15 Double-seating, internal-closing drain valve. ... 69
2-16 Tank riser bubbler system .. 70
2-17 Pumped circulation system for small riser pipes ... 71
2-18 Mixing system layout ... 77
3-1 How electrical potentials of various metals compare .. 82
3-2 Elements of the corrosion cell ... 82
3-3 Anode and cathode in a steel water-storage tank .. 83
3-4 Impressed-current system ... 85
3-5 Galvanic system ... 86
3-6 Automatically controlled AC/DC converter (rectifier) .. 88
3-7 (a) Vertical system reservoir tank. (b) Horizontal system reservoir tank .. 89
3-8 Primary components of paint: solvent, resin, and pigment .. 91
3-9 Surface preparation under controlled conditions .. 106
List of Figures

3-10 Open-nozzle blasting 107
3-11 Components needed to apply paint by air spray 118
3-12 Standard setup of an airless spray system 119
3-13 Standard setup of an air-assisted airless spray system ... 120
3-14 Standard setup of an electrostatic spray system 122
3-15 Standard setup of a plural-component spray system ... 123
3-16 Type 1A magnetic DFT gauge (banana gauge) 125
3-17 Type 2 electromagnetic DFT gauge 126
4-1 Roles of owner, constructor, and engineer in the competitive bid process 133
5-1 Typical leg tank elevation and shallow foundation plan .. 172
5-2 Typical shallow foundations 174
5-3 Examples of shallow mat and berm foundations 177
5-4 Typical ring-wall foundation plan for a flat-bottom tank .. 184
5-5 Typical ring-tee foundation plan for a single-pedestal tank ... 186
5-6 Typical ring-slab foundation plan for a single-pedestal tank ... 187
5-7 Typical pile group patterns for single foundations 195
5-8 Typical pile foundations 196
5-9 Typical drilled shaft 200
5-10 Drilled shaft reinforcing cage 202
5-11 Typical granular berm foundation 205
5-12 Typical foundation in shrink/swell soils 214
5-13 Shallow footing example 218
5-14 Design shear and bending moment evaluations 220
5-15 Flexural shear and bending moment evaluation 222
5-16 Shallow footing design example 225
6-1 Cutting plate by oxy-fuel torches 229
6-2 Pressing double-curvature plate 230
6-3 Forming fluted plates in a press break 231
6-4 Shop assembly of cut and formed plates for a dome roof ... 231
6-5 Shipping formed plates by truck 233
6-6 Shop flux cored arc welding 235
6-7 Typical rect-and-sketch layout for bottom plates 240
6-8 Tank bottom with annular ring 241
6-9 Breakdown of lapped area beneath shell and projected outside of tank 242
List of Figures

6-10 Erection of tower, fluted-column-style tank 248
6-11 Erection of cone plate, fluted-column-style tank ... 249
6-12 Erection of cylindrical shell plate, fluted-column-
style tank ... 249
6-13 Erection of spherical plate, pedestal-style tank 250
6-14 Erection of roof plate, pedestal-style tank 251
6-15 Multicolumn-style tank 252
6-16 Tower construction, composite elevated tank 253
6-17 Roof erection, composite elevated tank 254
6-18 (a) CET hoisted tank erection as the tank is being
raised. (b) CET hoisted tank erection with the tank in
the final position 255
6-19 CET liner plate formed to fit dome with derrick-
erected cone and shell plates 256
7-1 Bolt-hole patterns vary 262
7-2 Footing and floor concrete placement 263
7-3 Leveling plate assemblies 264
7-4 Foundation ring set on leveling plate assemblies 264
7-5 After floor sumps are installed, other piping is
stubbed off ... 265
7-6 Reinforcement placed in floor area and
around curb ... 265
7-7 Floor and curb concrete placed and finished 266
7-8 Concrete allowed to cure 266
7-9 Embedded anchor bolts are installed to specified projection
267
7-10 Assembly of pie-shaped segments 268
7-11 Floors using rectangular segments 268
7-12 Jack assemblies are anchored to tank floor 269
7-13 Roof segments are bolted and attached 270
7-14 The jacks raise the structure 270
7-15 Wind stiffeners, ladders, ladder cages, and
platforms are attached 271
7-16 Exterior scaffolding 271
7-17 Scaffolding bracket 272
7-18 Drive-out ladder and gin pole 273
7-19 Self-supported roof 274
7-20 Center-supported roof 274
7-21 Self-supported aluminum dome roof 275
7-22 Arrangement of parts, center-supported roof 275
7-23 Self-supported aluminum domes can be
constructed in place 276
7-24 Roof ventilator usually located in center of roof
at roof cap ... 277
List of Figures

7-25 Hinged, lockable roof access door near outside ladder .. 277
7-26 A walkway may be provided ... 278
7-27 Caged ladder is supplied with most tanks ... 279
7-28 Depending on coating, tank can be reinforced in factory or field 279
7-29 Brackets holding overflow pipe should be correctly located 280
7-30 Completed reservoir tanks ... 281
7-31 Completed standpipe .. 281
8-1 Foundation construction in progress ... 285
9-1 Masonry and concrete reservoir, capacity 23 mil gal (87,064 kL), in Parma Heights, Ohio ... 296
9-2 Water intake crib in Lake Erie; Cleveland, Ohio, is in the background 296
9-3 Major components of typical water distribution system 297
9-4 Node representation of a distribution system network; arrows indicate average pipe segment flow ... 298
9-5 Distribution system energy lines ... 299
9-6 Tracer study results of live pass-through distribution system tank with plug flow to determine contact time ... 302
9-7 Apparatus to measure CaCl tracer concentration at tank inlet and outlet. Ion-specific probes can be seen at left. Data were recorded on a PC ... 303
9-8 Computational fluid dynamics model of reservoir with two inlets and two outlets showing velocity contours. Light gray is highest velocity and dark gray is stagnant ... 304
9-9 Chlorine residual analyzers monitor inlet and outlet disinfectant residual at ground storage tank ... 306
9-10 Tank overflow and catch basin are protected from insects or vandals by combination stainless-steel cage and insect screen; flow switch (not shown) triggers overflow alarm ... 313
9-11 Grab sample retrieved from ground tank using calibrated depth sampling tube with check valves ... 320
9-12 Left to right: tank water elevation (pressure transmitter), disinfectant residual (analyzer), and water corrosivity (corrater) are monitored for ground water storage tank ... 322
List of Figures

9-13 Hypochlorite generation system makes disinfectant from brine for rechlorination at this water-storage facility .. 323
9-14 Aerial view of baffled tank optimized for contact time .. 325
9-15 Piston-style altitude valves shown here control flow and water elevation for two adjoining storage tanks .. 326
9-16 Isothermal lines for lowest one-day mean temperatures and normal daily minimum 30°F (−1°C) temperature line for January, United States and Southern Canada .. 334
9-17 More than 100 tons (90.72 metric tons) of “dirty” ice was discovered inside this 3-mil-gal (11.35-ML) elevated tank in the spring of 2004. It took weeks for repair crews to remove the ice before work on the tank could begin .. 336
9-18 Insulated surge tank in metropolitan area provides protection from water column separation to large pump station located approximately 200 ft (60.961 m) lower than tank .. 340
9-19 Computational fluid dynamics model of baffled clearwell showing velocity contours .. 342
9-20 Computational fluid dynamics model of 0.8 baffling factor tank .. 345
9-21 Model of positively buoyant turbulent jet .. 354
9-22 Negatively buoyant turbulent jet flow showing wall attachment .. 358
9-23 Turbulent jet flow into density-stratified tank model .. 358
9-24 Buoyant discharge from single port inlet at 45-degree angle into stagnant tank .. 361
9-25 Sheet flow from multiport diffuser into tank model showing formation of vortices and folding of interfaces in far field. Note better mixing distribution in far field .. 363
9-26 Double 90-degree elbow roof vent detail .. 365
9-27 Pan deck vent detail .. 365
9-28 Typical clog-resistant vent detail .. 366
List of Tables

1-1 Capacities and Sizes of Typical Welded-Steel Water-Storage Reservoirs .. 7
1-2 Capacities of Glass-Coated, Bolted-Steel Reservoirs and Standpipes ... 8
1-3 Capacities and Sizes of Typical Welded-Steel Standpipes ... 12
1-4 Capacities and Sizes of Typical Double-Ellipsoidal Elevated Tanks ... 18
1-5 Capacities and Sizes of Typical Medium-Capacity Elevated Tanks .. 20
1-6 Capacities and Sizes of Typical Large-Capacity Welded-Steel Elevated Tanks 21
1-7 Capacities and Sizes of Typical Small-Capacity Single-Pedestal Tanks .. 23
1-8 Capacities and Sizes of Typical Large-Capacity Single-Pedestal Tanks .. 26
1-9 Capacities and Sizes of Typical Modified Single-Pedestal Tanks ... 28
1-10 Required Water Pressure ... 31
3-1 Changes in Inside and Outside Coating Systems Specified in Various Editions of AWWA D102 104
3-2 Five Interior Coating Systems .. 111
3-3 Six Outside Coating Systems .. 112
3-4 Common Water Tank Coating Characteristics 113
5-1 ASTM Test Designations ... 161
5-2 Common Pile Types .. 190
6-1 Minimum Diameter for Plates Not Rolled 230
6-2 Roundness—Cylindrical Shells 258
6-3 Maximum Allowed Offset for Butt-Welded Plates Subject to Primary or Secondary Stress 259
List of Tables

9-1 Water Quality: Issues, Causes, and Suggested Solutions .. 308
9-2 Contaminant Restrictions and Monitoring Requirements for Distribution Systems 314
9-3 Secondary Nonenforceable Contaminants in Water Distribution Systems 315
9-4 Sediment Monitoring Parameters ... 316
9-5 Water Quality Monitoring Parameters for Storage Facilities 317
9-6 Thousands of British Thermal Units (Btu) Lost per Hour from Elevated Steel Tanks Based on Minimum Water Temperature of 42°F (5°C) and Wind Velocity of 12 mph (5 m/s) .. 332
9-7 Baffling Classifications and Factors ... 343
11-1 CCTV Summary .. 415
11-2 Perimeter Detection Technologies .. 416
11-3 Entry Control Summary .. 421
12-1 Comparison of Relative Risks, Benefits, and Costs .. 441
Water tanks are a vital part of the water distribution system. Since the late 1800s, thousands of steel plate water storage tanks have been constructed to store potable water in systems throughout the world. Because they were properly operated and maintained, some of those tanks are still in service today.

Storage tanks are a significant asset, and they warrant proper maintenance and operation. In the late 1970s, E. Crone Knoy (past chair of the Steel Tank Committee, a member of the American Water Works Association [AWWA] Hall of Fame, and founder of Tank Industry Consultants) started a series of seminars to educate tank owners and operators about the basics of steel tanks. A comparable seminar series was later offered by the Steel Tank Institute/Steel Plate Fabricators Association (STI/SPFA). Several of the authors who contributed to this volume used their STI/SPFA seminar presentations as a basis for their chapters.

Knoy also led the effort to publish AWWA’s Manual M42, Steel Water Storage Tanks. Published in 1998, M42 was used extensively in the development of this book. Updates to M42 in this work are consistent with the latest AWWA standards and industry practice.

Additional issues of importance to many water utilities that were not addressed in M42, such as security and water quality, are also included in this work.

Stephen W. Meier, P.E., S.E
Chair, AWWA Steel Tank Committee (305)
Acknowledgments

Many thoughts and ideas reflected in chapter 5 were influenced by the advice and philosophy of Dr. Donald A. Sawyer, Ph.D., P.E., my predecessor and senior consultant to the industry. His contributions are acknowledged with gratitude.

Sayed Stoman

Publication of this book would not have been possible without the assistance of Penni Snodgrass of Tank Industry Consultants for her management of the authors and shuffling of paperwork; Gay Porter De Nileon, Publications Manager at AWWA, for overseeing the project and coordinating communication between the AWWA and McGraw-Hill staffs; Linda Bevard, for her project management and editing skills and diligence in keeping the project moving; and Cheryl Armstrong, Karen Staab, and Jan Bailey of AWWA for creating and correcting the artwork and preparing it for publication.
Steel
Water Storage
Tanks