Steel Pipe—
A Guide for Design and Installation

AWWA MANUAL M11
Fourth Edition

American Water Works Association

Science and Technology
AWWA unites the drinking water community by developing and distributing authoritative scientific and technological knowledge. Through its members, AWWA develops industry standards for products and processes that advance public health and safety. AWWA also provides quality improvement programs for water and wastewater utilities.
Chapter 5 Water Hammer and Pressure Surge 51
 Basic Relationships, 51
 Checklist for Pumping Mains, 54
 General Studies for Water Hammer Control, 55
 Allowance for Water Hammer, 56
 Pressure Rise Calculations, 56
 References, 56

Chapter 6 External Loads .. 59
 Load Determination, 59
 Deflection Determination, 60
 Buckling, 63
 Extreme External Loading Conditions, 65
 Computer Programs, 68
 References, 68

Chapter 7 Supports for Pipe .. 69
 Saddle Supports, 69
 Pipe Deflection as Beam, 73
 Methods of Calculation, 75
 Gradient of Supported Pipelines to Prevent Pocketing, 76
 Span Lengths and Stresses, 76
 Ring Girders, 79
 Ring-Girder Construction for Low-Pressure Pipe, 100
 Installation of Ring Girder Spans, 101
 References, 109

Chapter 8 Pipe Joints .. 111
 Bell-and-Spigot Joint With Rubber Gasket, 111
 Welded Joints, 112
 Bolted Sleeve-Type Couplings, 113
 Flanges, 113
 Grooved-and-Shouldered Couplings, 115
 Expansion and Contraction—General, 116
 Ground Friction and Line Tension, 117
 Good Practice, 118
 References, 119

Chapter 9 Fittings and Appurtenances 121
 Designation of Fittings, 121
 Elbows and Miter End Cuts, 122
 Reducers, 130
 Bolt Hole Position, 130
 Design of Wye Branches, Laterals, Tees, and Crosses, 130
 Testing of Fittings, 131
 Unbalanced Thrust Forces, 131
 Frictional Resistance Between Soil and Pipe, 131
 Anchor Rings, 131
 Nozzle Outlets, 131
Chapter 10 Principles of Corrosion and Corrosion Control
General Theory, 137
Internal Corrosion of Steel Pipe, 146
Atmospheric Corrosion, 147
Methods of Corrosion Control, 147
Cathodic Protection, 147
References, 149

Chapter 11 Protective Coatings and Linings
Requirements for Good Pipeline Coatings and Linings, 151
Selection of the Proper Coating and Lining, 151
Recommended Coatings and Linings, 153
Epoxy-Based Polymer Concrete Coatings, 156
Coating Application, 156
Good Practice, 156
References, 157

Chapter 12 Transportation, Installation, and Testing
Transportation and Handling of Coated Steel Pipe, 159
Trenching, 160
Installation of Pipe, 163
Anchors and Thrust Blocks, 168
Field Coating of Joints, 171
Pipe-Zone Bedding and Backfill, 171
Hydrostatic Field Test, 171
References, 173

Chapter 13 Supplementary Design Data and Details
Layout of Pipelines, 175
Calculation of Angle of Fabricated Pipe Bend, 176
Reinforcement of Fittings, 176
Collar Plate Design, 180
Wrapper-Plate Design, 182
Crotch-Plate (Wye-Branch) Design, 183
Nomograph Use in Wye-Branch Design, 185
Thrust Restraint, 191
Anchor Rings, 199
Joint Harnesses, 197
Special and Valve Connections and Other Appurtenances, 202
Freezing in Pipelines, 202
Design of Circumferential Fillet Welds, 218
Submarine Pipelines, 220
References, 222

Appendix A Table of Working Pressures for Allowable Unit Stresses, 223

Index, 233

List of AWWA Manuals, 239
Figures

1-1 Steel pipe in filtration plant gallery, 2
1-2 Stress–strain curve for steel, 8
1-3 True stress–strain for steel, 8
1-4 Stress–strain curves for carbon steel, 9
1-5 Plastic and elastic strains, 9
1-6 Actual and apparent stresses, 10
1-7 Determination of actual stress, 10
1-8 Experimental determination of strain characteristics, 12
1-9 Effects of strain hardening, 14
1-10 Effects of strain aging, 14
1-11 Transition curves obtained from Charpy V-notch impact tests, 17
1-12 Spiral pipe weld seams, 18
2-1 Schematic representation of the sequence of operations performed by a typical machine for making electric-resistance-welded tubes from steel strip, 22
2-2 Cross section through weld point, 22
2-3 Electric resistance welding using high-frequency welding current, 22
2-4 Electric resistance welding by induction using high-frequency welding current, 22
2-5 Sequence of operations in a typical double submerged arc weld process, 23
2-6 Schematic diagram of process for making spiral-seam pipe, 24
2-7 Schematic diagram for making plate pipe, 24
3-1 Solution of the Hazen-Williams formula, 28
3-2 Solution of Scobey flow formula for \(K_s = 0.36 \), 30
3-3 Solution of Manning flow formula for \(n = 0.011 \), 32
3-4 Moody diagram for friction in pipe, 40
3-5 Resistance coefficients of valves and fittings for fluid flows, 41
4-1 Relation of various heads or pressures for selection of design pressure (gravity flow), 46
4-2 Relation of various heads or pressures for selection of design pressure (pumped flow), 46
5-1 Surge wave velocity chart for water, 53
6-1 Position of area, 67
7-1 Details of concrete saddle, 70
7-2 Saddle supports for 78-in. pipe, 70
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-3</td>
<td>Ring girders provide support for 54-in. diameter pipe, 71</td>
</tr>
<tr>
<td>7-4</td>
<td>Expansion joints between stiffener rings, 71</td>
</tr>
<tr>
<td>7-5</td>
<td>Anchor block, 71</td>
</tr>
<tr>
<td>7-6</td>
<td>Stiffener ring coefficients, 78</td>
</tr>
<tr>
<td>7-7</td>
<td>Equivalent stress diagram—Hencky–Mises theory, 80</td>
</tr>
<tr>
<td>7-8</td>
<td>Bending stress in pipe shell with ring restraint, 81</td>
</tr>
<tr>
<td>7-9</td>
<td>Stiffener ring coefficients, equal and opposite couples, 81</td>
</tr>
<tr>
<td>7-10</td>
<td>Stiffener ring stresses for partially filled pipe, 81</td>
</tr>
<tr>
<td>7-11</td>
<td>Stiffener ring coefficients, radial load supported by two reactions, 81</td>
</tr>
<tr>
<td>7-12</td>
<td>Stiffener ring coefficients—transverse earthquake, 81</td>
</tr>
<tr>
<td>7-13</td>
<td>Combination of solutions, 82</td>
</tr>
<tr>
<td>7-14</td>
<td>Stresses, moments, and plate thickness, 84</td>
</tr>
<tr>
<td>7-15</td>
<td>Detail of assumed ring section, 94</td>
</tr>
<tr>
<td>7-16</td>
<td>Long-span steel pipe for low pressures, 101</td>
</tr>
<tr>
<td>7-17</td>
<td>111-in. pipe on ring girders, 102</td>
</tr>
<tr>
<td>8-1</td>
<td>Welded and rubber-gasketed field joints, 112</td>
</tr>
<tr>
<td>8-2</td>
<td>Bolted sleeve-type couplings, 114</td>
</tr>
<tr>
<td>8-3</td>
<td>Grooved coupling, 116</td>
</tr>
<tr>
<td>8-4</td>
<td>Shouldered coupling, 116</td>
</tr>
<tr>
<td>8-5</td>
<td>Typical expansion joint with limit rods, 117</td>
</tr>
<tr>
<td>8-6</td>
<td>Typical expansion joint configurations, 118</td>
</tr>
<tr>
<td>9-1</td>
<td>Recommended dimensions for water pipe fittings (except elbows), 122</td>
</tr>
<tr>
<td>9-2</td>
<td>Recommended dimensions for water pipe elbows, 123</td>
</tr>
<tr>
<td>9-3</td>
<td>Tangent-type outlet (AWWA C208), 125</td>
</tr>
<tr>
<td>9-4</td>
<td>Computation method and formulas for compound pipe elbows, 127</td>
</tr>
<tr>
<td>9-5</td>
<td>Sample pipeline profile illustrating air valve locations, 135</td>
</tr>
<tr>
<td>10-1</td>
<td>Galvanic cell—dissimilar metals, 138</td>
</tr>
<tr>
<td>10-2</td>
<td>Galvanic cell—dissimilar electrolytes, 140</td>
</tr>
<tr>
<td>10-3</td>
<td>Galvanic cell on embedded pipe without protective coating, 140</td>
</tr>
<tr>
<td>10-4</td>
<td>Galvanic cell—pitting action, 140</td>
</tr>
<tr>
<td>10-5</td>
<td>Corrosion caused by dissimilar metals in contact on buried pipe, 140</td>
</tr>
<tr>
<td>10-6</td>
<td>Corrosion caused by dissimilar metals, 141</td>
</tr>
<tr>
<td>10-7</td>
<td>Corrosion caused by cinders, 141</td>
</tr>
<tr>
<td>10-8</td>
<td>Corrosion caused by dissimilarity of surface conditions, 141</td>
</tr>
<tr>
<td>10-9</td>
<td>Corrosion caused by dissimilar soils, 142</td>
</tr>
<tr>
<td>10-10</td>
<td>Corrosion caused by mixture of different soils, 142</td>
</tr>
</tbody>
</table>
10-11 Corrosion caused by differential aeration of soil, 142
10-12 Stray-current corrosion caused by electrified railway systems, 143
10-13 Control of stray-current corrosion, 144
10-14 Corrosion rate in various soils, 145
10-15 Cathodic protection—galvanic anode type, 148
10-16 Cathodic protection—rectifier type, 148
10-17 Bonding jumpers installed on sleeve-type coupling, 149
10-18 Bonding wire for bell-and-spigot rubber-gasketed joint, 149
12-1 Densified pipe zone bedding and backfill, 162
12-2 Special subgrade densification, 162
12-3 Bolt torque sequence, 166
13-1 Example of adequately detailed pipe special, 177
13-2 Plan and profile of bend in pipe on centerline of pipe, 177
13-3 Reinforcement of openings in welded steel pipe, 179
13-4 One-plate wye, 184
13-5 Three-plate wye, 184
13-6 Two-plate wye, 184
13-7 Nomograph for selecting reinforcement plate depths of equal-diameter pipes, 186
13-8 N factor curves, 187
13-9 Q factor curves, 187
13-10 Selection of top depth, 188
13-11 Wye branch plan and layout, 189
13-12 Thrust at branch or tee, thrust at bulkhead or dead end, 192
13-13 Resultant thrust at pipe elbow, 192
13-14 Typical thrust blocking of a horizontal bend, 192
13-15 Thrust blocking of vertical bends, 193
13-16 Force diagram, 195
13-17 Lap welded joint, single-butt weld joint, 196
13-18 Harnessed joint detail, 196
13-19 Anchor ring, 197
13-20 Harness lug detail, 205
13-21 Reinforcing pad for tapped opening, 206
13-22 Nipple with cap, 206
13-23 Flanged connection for screw-joint pipe, 206
13-24 Wall connection using coupling, 206
Extra-heavy half coupling welded to pipe as threaded outlet, 206
Thredolets, 206
Casing and removable two-piece roof, 209
Section of casing giving access to gate valve gearing, 210
Access manhole, 210
Blowoff with riser for attaching pump section, 211
Blowoff connection, 211
Manifold layout of relief valves and pressure regulators, 211
Tapping main under pressure, 212
Maximum frost penetration and maximum freezing index, 212
Heat balance in exposed pipelines, 214
Fillet nomenclature, 218
Submarine pipeline—assembly and launching, 221
Submarine pipeline—positioning by barge, 221
Submarine pipeline—floating string positioning, 222
Tables

1-1 Effects of alloying elements, 3
1-2 Maximum strain in pipe wall developed in practice, 12
3-1 Multiplying factors corresponding to various values of C in Hazen-Williams formula, 28
3-2 Multiplying factors for friction coefficient values—Base $K_s = 0.36$, 30
3-3 Multiplying factors for friction coefficient values—Base $n = 0.011$, 32
3-4 Slope conversions, 34
3-5 Flow equivalents, 35
3-6 Pressure (psi) for heads (ft), 36
3-6M Pressure (kPa) for heads (cm), 36
3-7 Head (ft) for pressures (psi), 37
3-7M Head (cm) for pressures (kPa), 37
3-8 Pressures (kPa) for heads ft (m), 38
3-9 Pressure equivalents, 38
4-1 Grades of steel used in AWWA C200 as basis for working pressures in Table A-1, 47
5-1 Velocity of pressure wave for steel pipe, 53
6-1 Values of modulus of soil reaction, E' (psi) based on depth of cover, type of soil, and relative compaction, 62
6-2 Unified soil classification, 62
6-3 Live-load effect, 63
6-4 Influence coefficients for rectangular areas, 66
7-1 Practical safe spans for simply supported pipe in 120° contact saddles, 74
7-2 Summary of moment calculations, 85
7-3 Stresses at support ring, 90
7-4 Summary of stresses for half-full condition, 100
7-5 Trigonometric data, 100
7-6 Values of moment of inertia and section modulus of steel pipe, 103
10-1 Galvanic series of metals and alloys, 139
10-2 Soils grouped in order of corrosive action on steel, 146
10-3 Relationship of soil corrosion to soil resistivity, 146
12-1 Comparison of standard density tests, 163
12-2 Torque requirements for AWWA C207 Class D ring flange bolts, 169
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-3</td>
<td>Torque requirements for steel pipe flange bolts and studs, 170</td>
</tr>
<tr>
<td>13-1</td>
<td>Example of pipe-laying schedule, 178</td>
</tr>
<tr>
<td>13-2</td>
<td>Recommended reinforcement type, 179</td>
</tr>
<tr>
<td>13-3</td>
<td>Dimensions and bearing loads for anchor rings in concrete—maximum pipe pressure of 150 psi and 250 psi, 198</td>
</tr>
<tr>
<td>13-4</td>
<td>Tie bolt schedule for harnessed joints, 199</td>
</tr>
<tr>
<td>13-5</td>
<td>Dimensions of joint harness tie bolts and lugs for rubber-gasketed joints, 203</td>
</tr>
<tr>
<td>13-5A</td>
<td>Maximum allowable load per tie bolt, 204</td>
</tr>
<tr>
<td>13-6</td>
<td>Plate dimensions and drill sizes for reinforced tapped openings, 207</td>
</tr>
<tr>
<td>13-7</td>
<td>Maximum size of threaded openings for given size pipe with reinforcing pads, 207</td>
</tr>
<tr>
<td>13-8</td>
<td>Dimensions of extra-heavy half-couplings, 208</td>
</tr>
<tr>
<td>13-9</td>
<td>Dimensions figures thredolets, 208</td>
</tr>
<tr>
<td>13-10</td>
<td>Heat balance factors, 215</td>
</tr>
<tr>
<td>13-11</td>
<td>Values of D and v, 216</td>
</tr>
<tr>
<td>13-12</td>
<td>Conduction heat-transfer values, 216</td>
</tr>
<tr>
<td>13-13</td>
<td>Emissivity factors, 217</td>
</tr>
<tr>
<td>13-14</td>
<td>Wind velocity factors, 217</td>
</tr>
<tr>
<td>A-1</td>
<td>Working pressures for allowable unit stresses, 224</td>
</tr>
</tbody>
</table>
Foreword

This manual was first authorized in 1943. In 1949, committee 8310D appointed one of its members, Russel E. Barnard, to act as editor in chief in charge of collecting and compiling the available data on steel pipe. The first draft of the report was completed by January 1957; the draft was reviewed by the committee and other authorities on steel pipe. The first edition of this manual was issued in 1964 with the title Steel Pipe—Design and Installation.

The second edition of this manual was approved in June 1984 and published in 1985 with the title Steel Pipe—A Guide for Design and Installation.

The third edition of the manual was approved in June 1988 and published in 1989.

This fourth edition of the manual was approved March 2003. Major revisions to the third edition included in this edition are (1) the manual was metricized and edited throughout; (2) a discussion of Chemistry, Casting and Heat Treatment (Sec. 1.3) and a discussion of stress evaluation in spiral-welded pipe (Sec. 1.12) were added to chapter 1; (3) Table 4-1 was revised to reflect new steel grades and Charpy test requirements for pipe with wall thicknesses greater than \(\frac{1}{2} \) in. (12.7 mm); (4) calculations for external fluid pressure (Sec. 4.4) was revised to include consideration of pipe stiffness added by the cement–mortar coating and lining; (5) in Table 6-1, values of \(E' \) used for calculation of pipe deflection were revised to reflect increasing soil stiffness with increasing depth of cover; (6) in chapter 7, the discussion of ring girder design was revised, and a design example was added; (7) chapter 9, Fittings and Appurtenances, was revised to reflect the provisions of AWWA C208-96; (8) a new section on installation of flanged joints was added to chapter 12; and (9) thrust-restraint design calculations in chapter 13 were revised.

This manual provides a review of experience and design theory regarding steel pipe used for conveying water, with appropriate references cited. Application of the principles and procedures discussed in this manual must be based on responsible judgment.
This page intentionally blank.
Acknowledgments

This revision of Manual M11 was made by the following members of the Steel Water Pipe Manufacturers Technical Advisory Committee (SWPMTAC). The Steel Water Pipe Manufacturers Technical Advisory Committee Task Group on updating the manual M11 had the following personnel at the time of revision:

Dennis Dechant, Task Group Chairman

R.R. Collins, JCM Industries Inc., Nash, Texas
B. Kane, Cascade Waterworks Manufacturing Company, Yorkville, Ill.
B.D. Keil, Continental Pipe Manufacturing Company, Pleasant Grove, Utah
M. Mintz, M-Square Associates Inc., Elmont, N.Y.
G.F. Ruchti, American Spiral Weld Pipe Company, Punta Gorda, Florida
K.L. Shaddix, Smith-Blair Inc., Texarkana, Texas
B. Spotts, RTLC Piping Products Inc., Kosse, Texas
J.C. Taylor, Piping Systems Inc., Fort Worth, Texas
M. Topps, Glynwed Piping Systems, Hixson, Tenn.
R. Warner, National Welding Corporation, Midvale, Utah

This revision was reviewed and approved by the Standards Committee on Steel Pipe. The Standards Committee on Steel Pipe had the following personnel at the time of approval:

George J. Tupac, Chairman
John H. Bambei Jr., Vice Chairman
Dennis Dechant, Secretary

Consumer Members

G.A. Andersen, NYC Bureau of Water Supply, Little Neck, N.Y.
J.H. Bambei Jr., Denver Water Department, Denver, Colo.
R.V. Frisz, US Bureau of Reclamation, Denver, Colo.
T.R. Jervis, Greater Vancouver Regional District, Burnaby, B.C.
T.J. Jordan, Metropolitan Water District of Southern California, La Verne, Calif.
T.A. Larson, Tacoma Public Utilities, Tacoma, Wash.
G.P. Stine, San Diego County Water Authority, Escondido, Calif.
Milad Taghavi, Los Angeles Department of Water & Power, Los Angeles, Calif.
J.V. Young, City of Richmond, Richmond, B.C.
General Interest Members

W.R. Brunzell, Brunzell Associates Ltd., Skokie, Ill.
R.L. Coffey, Kirkham Michael & Associates, Omaha, Neb.
H.E. Dunham, MWH Americas Inc., Bellevue, Wash.
S.N. Foellmi, Black & Veatch Corporation, Irvine, Calif.
J.W. Green, Alvord Burdick & Howson, Lisle, Ill.
K.D. Henrichsen, HDR Engineering Inc., St. Cloud, Minn.
J.K. Jeyapalan, Pipeline Consultant, New Milford, Conn.
Rafael Ortega, Lockwood Andrews and Newnam, Houston, Texas
A.E. Romer, Boyle Engineering Corporation, Newport Beach, Calif
H.R. Stoner, Consultant, North Plainfield, N.J.
C.C. Sundberg, CH2M Hill Inc., Bellevue, Wash.
J.S. Wailes,† Standards Engineer Liaison, AWWA, Denver, Colo.
L.W. Warren, Seattle, Wash.
W.R. Whidden, Post Buckley Schuh & Jernigan, Orlando, Fla.

Producer Members

Mike Bauer, Tnemec Company, Inc., North Kansas City, Mo.
R.R. Carpenter, American Cast Iron Pipe Company, Birmingham, Ala.
Dennis Dechant, Northwest Pipe Company, Denver, Colo.
J.E. Hagelskamp,† American Cast Iron Pipe Company, Birmingham, Ala.
B.D. Keil, Continental Pipe Manufacturing Company, Pleasant Grove, Utah
J.L. Luka,* American SpiralWeld Pipe Company, Columbia, S.C.
J.A. Wise, Canus International Sales Inc., Langley, B.C.

*Alternate
†Liaison