Identification of Algae in Water Supplies

Table of Contents

Section I Introduction to the Algae by George Izaguirre

Section II Review of Methods for Collection, Quantification and Identification of Algae by Miriam Steinitz-Kannan

Section III Bibliography

Section IV Key for the identification of the most common freshwater algae in water supplies

Section V Photographs and descriptions of the most common genera of algae found in water supplies.

Appendix A Figures A-1–A-6

Algae — AWWA Manual 7, Chapter 10

Copyright © 2002 American Water Works Association, all rights reserved. No copying of this information in any form is allowed without expressed written consent of the American Water Works Association.

Disclaimer
While AWWA makes every effort to ensure the accuracy of its products, it cannot guarantee 100% accuracy. In no event will AWWA be liable for direct, indirect, special, incidental, or consequential damages arising out of the use of information presented on this CD. In particular AWWA will not be responsible for any costs, including, but not limited to, those incurred as a result of lost revenue. In no event shall AWWA's liability exceed the amount paid for the purchase of this CD.
The algae are a large and very diverse group of organisms that range from minute single-celled forms to the giant marine kelps. They occupy a wide variety of habitats, including fresh water (lakes, reservoirs, and rivers), oceans, estuaries, moist soils, coastal spray zones, hot springs, snow fields and stone or concrete surfaces. In water, they can be planktonic, meaning suspended in the water and carried passively by the currents, or attached to rocks, sediment, reservoir walls, or other plants. They all have in common the ability to photosynthesize with the evolution of oxygen (i.e., they are oxygenic phototrophs). In this process, they use light energy to convert carbon dioxide and water to sugars, and from these to cell matter. The algae include many different taxonomic groups, but the major and most important distinction is between the blue-green algae, or cyanophyta, and the eukaryotic algae, which encompass all the other divisions. The former have an essentially bacterial cell structure, hence the modern designation of cyanobacteria.

The identification of algae is important not only for correctly determining the source of problems and the “target” of corrective measures, but also to enable people in different places and at different times to communicate. There is much disagreement in terms of algal taxonomy, but further confusion has arisen from investigators either incorrectly identifying an organism, or calling the same organisms by different names. It is important to establish some continuity and consistency in the naming of algae.

The significance of algae in drinking water arises from their often abundant presence in the aquatic environment. They are foremost among the organisms that can affect water supplies, either adversely or beneficially, and most reports of biogenic water quality problems in surface waters involve algae. However, there are also beneficial effects...
Identification of Algae in Water Supplies

Section I

of algae that are often overlooked. First, the cyanobacteria are believed to have been the first oxygen-producing photosynthetic organisms on earth, and responsible for the development of an oxygen atmosphere that made possible all the higher forms of life. Because all algae release oxygen as part of their metabolism, they contribute to the oxygenation of water supplies and are considered desirable in this regard. Algae also play an important part of the aquatic food chain, as they are the main food source for zooplankton, which in turn serve as food for small fish and other aquatic organisms. This is important from a general ecological point of view, but is also significant in lakes and reservoirs that serve as fisheries in addition to drinking water sources. Algae have also been used as food or food additives in many countries, especially the marine kelps and commercially grown Spirulina. Some algae are also potential sources of pharmaceuticals and other bioactive substances. Algae have also been utilized in the treatment of wastewater and other liquid waste.

The adverse effects of algae include taste and odor, filter clogging, oxygen depletion, toxin production, the formation of disinfection byproducts, undesirable pH changes, and scum formation in lakes and reservoirs. The production of objectionable taste-and-odor substances is one of the most common deleterious effects of algae in water supplies, resulting in higher treatment costs and affecting the acceptability of the water to the consumers. This problem can also lead to the erosion of public confidence in the water supply. The usual odors or off-flavors are earth-musty, moldy, fishy, grassy or “septic.” The most difficult odors to deal with are those involving the earthy-musty compounds geosmin or 2-methylisoborneol (MIB), which can be detected by many people at extremely low concentrations (<15 ng/L). They are very difficult to remove by conventional treatment, although they can be removed by ozone or granular activated carbon. These compounds are produced by bacteria called actinomycetes, and by some cyanobacteria. Many of the cyanobacteria able to produce these compounds have been isolated...
only in the last twenty years. Some algae can lead to clogging of filters in treatment plants, thereby drastically reducing the length of filter runs and necessitating frequent backwashings. In extreme cases, clogging may require more water to backwash than the amount of filtered water produced, severely diminishing the efficiency and cost-effectiveness of the process. This problem is usually caused by certain diatoms, but other algae can also be responsible, especially those that form colonies or that have sticky surfaces. A related problem is the clogging of screens and trash racks in reservoirs, that can result from accumulations of filamentous algae.

A common adverse effect is the depletion of oxygen following the death and decay of an algal bloom. The end result is often a massive fish kill. This problem is usually associated with blooms of certain colonial or filamentous bluegreens that form surface scums. The floating algae not only exert an oxygen demand as they decay, but can also act as a physical barrier to the exchange of oxygen between the atmosphere and the water. These scums are unsightly and can lead to accumulations on the shore, an undesirable development in a recreational water body.

Some cyanobacteria can produce a variety of toxins, which have caused deaths of cattle, horses, swine, sheep, dogs and other animals. Reports of algal poisonings have come from many parts of the world, including Australia, the United States, Canada, South Africa, and New Zealand. These toxins are of four general classes: the cyclic peptide hepatotoxins exemplified by the microcystins and nodularin, the alkaloid neurotoxins such as anatoxin-a and saxitoxins, the cyclic alkaloids such as cylindrospermopsin, and the dermatotoxins, such as aplysatoxins and lyngbyatoxin. There is mounting evidence that humans are susceptible to these toxins as well. One recent incident involved the cyanotoxin contamination of the water in a hemodialysis facility in Brazil, resulting in fifty deaths. Interest in algal toxins by the drinking water industry has accelerated in recent years, especially in light of this and other incidents.
It has been recognized since at least 1980 that algae or their extracellular metabolites can react with chlorine to form trihalomethanes and other disinfection byproducts. Treating an algal bloom with chlorine will generally lead to an elevation of these compounds in the water, in the near term. This can be a difficult problem to avoid in open treated water reservoirs subject to algal blooms. Since there is no filtration capability downstream of the impoundment, the only recourse to the utility is to use some chemical means of control, usually copper sulfate or chlorine.

Algae can lead to undesirable pH shifts in the course of their growth in a lake or reservoir, usually toward the alkaline side. In some cases pH’s as high as 9.5 have been observed in the upper levels of a reservoir with abundant algae, and this can interfere with water treatment processes. Since some treatment processes are very pH-sensitive, it is undesirable to have pH fluctuations in the source water.
BIBLIOGRAPHY

(* indicates most useful reference)

Identification of Algae in Water Supplies

Section III

Section III

US Environmental Protection Agency. 1996. Microscopic Particulate Analysis (MPA) for Filtration Plant Optimization. EPA 910-R-96-001, USEPA Region 10, Seattle, WA.

U.S. Environmental Protection Agency, National Environmental Research Center, Cincinnati, OH.

Key for the Identification of The Most Common Freshwater Algae in Water Supplies

(This key is based on keys given in American Public Health Association (1995), Dillard, (1999) and Weber, 1971)

1a Chloroplasts (plastids) absent; generally blue-green; does not stain blue/black with Lugol’s iodine solution (no starch present)........ Cyanobacteria (blue green algae) Go to 4

1b Chloroplast(s) present. Lugol’s iodine test positive or negative Go to 2

2a Cell wall rigid with regular pattern of fine markings, cells (frustules) formed of two silicon halves (valves), one over the other like a box and lid. Not stain blue with Lugol’s iodine solution (no starch present)........ Bacillariophyta (diatoms) Go to 16

2b Cell wall not as above. Lugol’s iodine test positive or negative Go to 3

3a Cell or colony motile; flagella present (often not readily visible) Go to 40

3b Nonmotile; no flagella present Go to 52

Cyanobacteria (blue green algae)

4a Cells in filaments (or much elongated to form a thread) Go to 5

4b Cells not in filaments Go to 12

5a Heterocysts present Go to 6

5b Heterocysts absent Go to 10

Disclaimer

While AWWA makes every effort to ensure the accuracy of its products, it cannot guarantee 100% accuracy. In no event will AWWA be liable for direct, indirect, special, incidental, or consequential damages arising out of the use of information presented on this CD. In particular AWWA will not be responsible for any costs, including, but not limited to, those incurred as a result of lost revenue. In no event shall AWWA’s liability exceed the amount paid for the purchase of this CD.
Section IV

6a Heterocysts located at one end of the filament- filament not gradually narrowed to one end *Cylindrospermum*

6b Heterocysts at various locations in the filament Go to 7

7a Filament unbranched .. Go to 8

7b Filament with occasional (false) branches (rare in water supplies) *Scytonema* (no image available) or *Tolypothrix*

8a Cells cylindric, often in tight parallel clusters. Heterocysts and akinets cylindric to oval in shape *Aphanizomenon*

8b Filaments not in tight parallel clusters. Cells, heterocysts and akinets usually round .. Go to 9

9a. Filaments in a common gelatinous mass *Nostoc*

9b. Filaments in not in a common gelatinous mass *Anabaena*

10a Filaments with spiral form throughout *Spirulina*

10b Filaments not spiral .. Go to 11

11a Filaments surrounded by a sheath that may extend beyond the ends of the filaments of cells *Lyngbya*

11b Filaments not surrounded by a sheath. Filament may show movement .. *Oscillatoria*

12a Cells in a regular pattern of parallel rows, forming a plate .. *Merismopedia*

12b Cells not as above .. Go to 13

13a Cells regularly arranged near surface of a spherical gelatinous sheath. Cells ovate to heartshaped, connected to the center of the mass by colorless stalks .. *Gomphosphaeria*
Section IV

13b Gelatinous sheath, if present, not spherical, or cells not only near surface of mass ...Go to 14

14a Cells cylindric-oval..Aphanotheca

14b Cells spherical ..Go to 15

15a Two or more distinct layers of gelatinous sheath around each cell or cell cluster (No photo image available, see Fig. A-3)........Gloeocapsa

15b Mucilagenous sheath not distinctly layered, colonies composed of many crowded cells within the sheath, cells often appear purplish-brown in colorMicrocystis

15c Cells evenly spaced, sometimes in pairs, within the mucilaginous sheath ..Aphanocapse

15d Cells isolated or in colonies of 2-32 cells. Sheath thin or absent ..Chroococcus

Diatoms

16a Valves without a true raphe or pseudoraphe (raphe is a slit in the valve that allows for diatom mobility); valve view circular in outline, ornamentation radial about a central point (centric diatoms) ...Go to 17

16b Valves with true raphe or pseudoraphe; ornamentation transverse and/or longitudinal (pennate diatoms)Go to 21

17a Frustules united into filaments, with valve faces in contact, therefore cells commonly seen in side (girdle) view.......................Melosira, Aulacoseira, or Skeletonema

17b Frustules usually solitary, but may form short chains ..Go to 18
Identification of Algae in Water Supplies

Section IV

18a Valves with two marginal protuberances or horns on opposite sides of the valve; usually seen in girdle view ... *Biddulphia*
 (no image available)
 or *Pleurosira* (view image)

18b Valves lacking protuberances ..Go to 19

19a Valve margins otherwise; central area not sharply distinct from margin ..Go to 20

20a Marginal spines always present. Radial markings extending from center to margin *Stephanodiscus*

20b No marginal spines. Ornamentation of valve uniform often with geometric facets..................... *Coscinodiscus*

21a True raphe absent, pseudoraphe present on both valves ..Go to 22

21b True raphe present on at least one valve; raphe may be very short or rudimentary, or may be concealed in a keel or wing ...Go to 26

22a Frustules with thick longitudinal septae running parallel to the valve faces *Tabellaria*

22b Frustules without septae..Go to 23

23a Valves with thickened internal transverse ribs (costae), extending mostly completely across valve faceGo to 24

23b Valves without costae ..Go to 25

24a Valves symmetrical about the transapical plane *Diatoma*
Section IV

24b Valves asymmetrical about the transapical plane, colonies fan-shaped ...Meridion

25a Frustules with bulbous ends, the two ends unequal in size. Typically forming stellate coloniesAsterionella

25b Frustule ends equal. Cells attached side by side forming ribbon like chains, or solitary ..Fragilaria and Synedra

26a Raphe evident on at least one valveGo to 27

26b Raphe not readily evident, concealed in a keel or wing ...Go to 35

27a Raphe on one valve only. Opposing valve with pseudoraphe or rudimentary raphe near valve poles ...Go to 28

27b Raphe or rudimentary raphe on both valvesGo to 30

28a Valves elliptical (round-oval) in valve view. One valve with pseudoraphe ..Cocconeis

28b Valves not elliptical, usually linear, usually bent when seen in girdle view ...Go to 29

29a Valves symmetrical about the transapical plane, one valve with pseudoraphe ..Achnanthes

29b Valves asymmetrical about the transapical plane, one valve with rudimentary raphe near the poles ...Rhoicosphenia

30a Raphe rudimentary, short, near poles onlyEunotia

30b Raphe fully developed, extending the length of the valve ...Go to 31

Continue
Identification of Algae in Water Supplies

Section IV

31a Valves symmetrical about both the transapical and apical plane ...Go to 32

31b Valves asymmetrical about either the apical or transapical plane...Go to 33

32a Valves with chambered striae, usually with parallel sides and broadly rounded polesPinnularia

32b Striae not chambered...Navicula

(See also Frustulia, Stauroneis, Mastogloia, Caloneis, Gyrosigma, etc.)

33a Valves asymmetrical about the transapical plane, symmetrical about the apical planeGomphonema

33b Valves symmetrical about the transapical plane, asymmetrical about the apical planeGo to 34

34a Valve faces parallel, Raphe located almost through center of valve ..Cymbella

34b Valve faces not parallel, both valve faces can be seen in girdle view. Raphe near edge of valvesAmphora

35a Keel elevated into a lateral “wing” or flattened on the valve surface, costae extending across valveGo to 36

35b Valves without internal transverse ribs or costae...........Go to 37

36a Raphe with “V” shaped medial extension. Costae alternating with two or more rows of alveoliEpithemia

36b Raphe without “V” shaped medial extension, Raphe canal without pores.................................Rhopalodia

Back to Table of Contents
Section IV

37a Valves with lateral keel (or canal) extending along both margins of each valve.................................Go to 38

37b Valves with lateral keel extending along only one margin of each valve ..Go to 39

38a Valve face longitudinally undulate, undulations seen also in girdle view. “Peanut shaped”Cymatopleura

38b Valve face with no undulations, but with heavy ribsSurirella

39a Keel eccentric to the median axis (except for Bacillaria). Keel with a row of circular pores (carinal dots or keel puncta).Keel diagonally opposite on both valves so it may be seen on each valve by slight change in focus..Nitzschia

39b Keel directly opposite on both valves (can’t see change by changing focus). Frustules robust..........Hantzschia

Flagellated Algae

40a Cells in a loose, rigid conical case (lorica); isolated or in a branching colony..Dinobryon

40b Case or lorica if present not conical; colony if present not branching..Go to 41

41a Cells single or in pairs ..Go to 42

41b Cells in colonies of four or more cellsGo to 49

42a Flagella emerging from a prominent transverse groove that encircles the cell. (Dinoflagellates)Go to 43

42b Cells without transverse groove ..Go to 45
Section IV

43a Cells with a long anterior horn and 2 or 3 shorter posterior horns ... Ceratium

43b Cells without horn-like projections Go to 44

44a Cell wall composed of plate-like subunits Peridinium
 (see also Gonyaulax, Glenodinium)

44b Cells “naked”, no cell wall................................. Gymnodinium
 (See also Gyrodinium, Massartia)

45a Cells with long bristle-like spines and/or scales ... Mallomonas
 (No photo image available. See Fig. A-1)

45b Cells without bristles or scales Go to 46

46a Cells enclosed in a rigid covering, cell wall or loricaGo to 47

46b Cells without a rigid lorica.. Go to 48

47a Lorica opaque, brown to red. Surface smooth or with granules or spines ... Trachelomonas

47b Lorica transparent, cells with golden-brown chloroplasts, does not stain blue/black with Lugol’s iodine ... Chrysococcus
 (No photo image available, see Fig. A-4)

47c Cell was clear, cells with grass-green chloroplasts, two flagella per cell, stains blue/black with Lugol’s iodine ... Chlamydononas

48a Cell membrane (pellicle) plastic. Cells can change shapes during movement ... Euglena
48b Cell membrane rigid, cell shape fixed, cells flattened ... Phacus

49a Chloroplasts golden-brown, cells in contact with one another. Starch test negative Synura

49b Chloroplasts grass-green, starch test positive (stains blue with Iodine) ... Go to 50

50a Cells within a colony in contact with one another ... Pandorina
(No photo image available, see Fig. A-1)

50b Cells within a colony not in contact with one another ... Go to 51

51a Colony composed of several hundred cells Volvox

51b Colony with less than 75 cells Eudorina

Green Algae

52a Cells jointed together to form a network Hydrodictyon

52b Algae not forming a net ... Go to 53

53a Cells elongated, attached side by side with their long axis parallel to one another. Number of cells commonly two, four or eight.......................... Scenedesmus

53b Cells not attached side by side ... Go to 54

54a Cells divided into mirror-image halves (semicells) by a mid-region constriction. If constriction not obvious in the cell wall itself, the chloroplast is so divide (Desmids) .. Go to 55
Section IV

54b Cells not divided at the mid-region ..Go to 59

55a Cells flattened with a deep median constriction; semicells with several lobes, those lobes with secondary lobes and lobules that appear as sharp teeth ..Micrasterias (No photo image available, see Fig. A-4)

55b Cells not flattened ..Go to 56

56a Cell margin with rounded lobes, apices with a deep notch or shallow depression; semicells with 1 to several protuberances which are often granulate. (No photo image available, See Fig. A-5).....Euastrum

56b Cells not as above ..Go to 57

57a Each half of cell with three or more spinelike or pointed arms, cells pyramidalStaurastrum (No photo image available, see Fig. A-1)

57b Cells with no such extensions, not pyramidal or several-angled in top view ..Go to 58

58a. Cells circular or subcircular in top viewCosmarium

58b. No distinct mid-region constriction in cell wall. Two chloroplasts per cell with unpigmented area across center of cell. Conspicuous vacuole in each apical region. Most species are bowed or crescentshaped. A few have straight cellsClosterium

59a. Cells forming filaments ..Go to 11

59b. Cells isolated or in non-filamentous coloniesGo to 60
Identification of Algae in Water Supplies

Section IV

60a. Cells elongated ..Go to 61
60b. Cells round to oval or angularGo to 63
61a. Cells colonial, radiating from a central pointActinastrum
61b. Cells isolated or in irregular clustersGo to 62
62a. Cells 5 to 10 times as long as broad, crescent shape to almost straight...........................Ankistrodesmus
62b. Cells 2 to 4 times as long as broad, semicircular, cell apices pointed..Selenastrum
 (No image available)
63a. Cells in a colony of (2) 4-128 angular cells forming a circular plate, marginal cells usually shaped differently than those within the colonyPediastrum
63b. Cells not arranged as above ..Go to 64
64a. Colony at tight sphere of cells, short connecting processes between cells..Coelastrum
64b. Colony a loose sphere of cells enclosed by a common membrane..Go to 65
65a. Cells ellipsoid, oval, occasionally one finds a solitary cell (No photo image available, see Fig. A-5).....Oocystis
65b. Cells round, connected to center of colony by a branching stalk..Dictyosphaerium
Section IV

65c. Cells round, chloroplast cup shaped, cells isolated or in tightly grouped small colony (No photo image available, see Fig. A-2) … *Chlorella*

66a. Filaments branched ……………………………………………………………… Go to 71
66b. Filaments not branched ……………………………………………………………… Go to 67

67a. Chloroplast(s) twisted into spiral (helical) form ……… *Spirogyra*
67b. Chloroplast not spiral ……………………………………………………………… Go to 68

68a. Chloroplast a flat or twisted axial ribbon with several conspicuous pyrenoids ………………………………………… *Mougeotia*
68b. Chloroplast not as above ……………………………………………………………… Go to 69

69a. Cells cylindrical, with 2 star-shaped chloroplasts each containing a single pyrenoid ………………………………………… *Zygnema*
69b. Chloroplast not as above ……………………………………………………………… Go to 70

70a. Chloroplast a parietal network, cells cylindrical but slightly narrowed at the posterior ends, some cells with one or more ring-like scars; may have distinctly enlarged oogonia ………………………………………… *Oedogonium*
70b. Chloroplast a marginal band incompletely encircling the cell wall. Cells quadrangular ………………………………………… *Ulothrix*

71a. Apices of branches acutely pointed …………………… *Stigeoclonium*
71b. Apices of branches rounded. Each cell with many pyrenoids ………………………………………… *Cladophora*
Anabaena sp. (blue-green/cyanobacteria)- A few species of this genus are planktonic: others are epiphytic, or form gelatinous masses. Among the planktonic forms several are coiled (Prescott 1982). Some of the planktonic species are capable of producing lethal microcystin toxins in large concentrations. Anabaena sp. will produce a grassy, musty, or nasturium odor at moderate concentrations. A rotten, septic, or medicinal odor is possible with large concentrations. Critical concentration for odor production is 530,000 cells/100 ml. (AWWARF 1987)
Closterium *sp.* (Chlorophyta/Green Algae)- Cells are crescent shaped, variously bowed, but in some species nearly straight, without apical spines. There is one axial chloroplast per semi cell, each with longitudinal ridges. Each cell may have few to many pyrenoids, which can be axial or scattered. The cells are either colorless or greenish brown. There is a terminal vacuole at the end of each cell (Prescott 1982). *Closterium sp.* will produce a grassy odor in large quantities. The critical concentration for odor production is 20,000 cells/100 mls (AWWARF 1982).
Euglena sp. (Euglenophyta). Cells often changing shape when swimming. Numerous disc shaped chloroplasts are usually green but one species sometime is colored red because of a pigment (Haematochrome). The red pigment seems to be produced in response to intense light. Ponds may have a bright red film over the surface caused by Euglena blooms. This algae is found in eutrophic waters with high levels of organic material. It is a pollution indicator.
Nostoc sp. (blue-green/cyanobacteria)—A membranous, globular, or irregularly lobed colony of uniseriate unbranched trichomes. The individual cells can be globulose and bead like, barrel shaped, or cylindrical. The cells are enclosed in copious thick mucilage, which in many species forms a firm integument that gives the colony a fixed shape. Individual sheaths are confluent with the colonial mucilage. The trichomes are without basal-distal differentiation and are made up of vegetative cells, heterocysts and gonidia when mature. Nostoc is very similar to Anabaena, but unlike Anabaena, retains its shape when taken out of water.
Spirulina sp. (blue-green/cyanobacteria)—Filamentous and spirally twisted. It consists of a unicellular trichome that is cylindrical throughout and not tapering at the apices. How tight the spiral twists are depend on the species, some being very loose and others being very tight. Trichomes can be free-floating and planktonic or intermingled with other forms of algae. Sometimes it forms layers on soil where water has receded. *Spirulina* is used in human dietary supplements even though it often is found mixed with toxin producers. *Spirulina* is an indicator of estuarine pollution and of sewage pond algae.
Volvox sp. (Chlorophyta/ Green Algae)—An algae that can cause taste and odor problems in water. *Volvox* is colonial and free-swimming. The cells are arranged at the periphery of gelatinous sphere of homogeneous mucilage. The individual cell’s sheathes may be seen as well. Each colony may contain anywhere from 500 to several thousand cells. Each cell has two flagella of equal length in some species the cells are connected by protoplasmic strands called ‘canals’. The chloroplast is a parietal incomplete cup that covers most of the wall. Daughter colonies form within the interior of the sphere by repeated divisions of special gonidia cells.